EEG person identification using Facenet, LSTM-RNN and SVM

被引:5
作者
Bouallegue, Ghaith [1 ]
Djemal, Ridha [2 ]
机构
[1] Univ Sousse, Dept Elect Engn, ENISo Sousse, Sousse, Tunisia
[2] Univ Sousse, Dept Elect Engn, ISSAT Sousse, Sousse, Tunisia
来源
PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020) | 2020年
关键词
Electroencephalography; Deep Learning; Clustering; Long-Short Term Memory; Support Vector Machine;
D O I
10.1109/SSD49366.2020.9364129
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electroencephalography (EEG) is the recording of electrical activity occurring in the brain, it represents the whole neural signal flow of the brain giving plenty of complex, yet abstract information. As many papers validated the individual identification using EEG Features for security purposes, we strongly believe that human EEG contains a fingerprint pattern that may identify each subject apart. In this paper, we have created a new Long Short-Term Memory (LSTM) based neural network that has learned pattern recognition from Google's, facial identification neural network, Facenet and forwarded by a Support Vector Machine (SVM) for final clustering. Our findings have shown, a pattern recognition with a loss of 0.137 and a final clustering accuracy of 97.84%.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 20 条
  • [1] EEG electrode selection for person identification thru a genetic-algorithm method
    Albasri, Ahmed
    Abdali-Mohammadi, Fardin
    Fathi, Abdolhossein
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
  • [2] Alhagry S, 2017, INT J ADV COMPUT SC, V8, P355, DOI 10.14569/IJACSA.2017.081046
  • [3] Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    Andrzejak, RG
    Lehnertz, K
    Mormann, F
    Rieke, C
    David, P
    Elger, CE
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 061907
  • [4] [Anonymous], 2012, INT J BIOSCIENCE BIO
  • [5] A spatio-temporal model for EEG-based person identification
    Das, Banee Bandana
    Kumar, Pradeep
    Kar, Debakanta
    Ram, Saswat Kumar
    Babu, Korra Sathya
    Mohapatra, Ramesh Kumar
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (19) : 28157 - 28177
  • [6] Das R, 2017, EUR SIGNAL PR CONF, P951, DOI 10.23919/EUSIPCO.2017.8081348
  • [7] Hochreiter Sepp, 1997, Neural Comput., V9, P1735
  • [8] Huang G. B., 2008, P WORKSH FAC REAL LI, P1
  • [9] Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation
    Marcel, Sebastien
    Millan, Jose del R.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (04) : 743 - 748
  • [10] An introduction to kernel-based learning algorithms
    Müller, KR
    Mika, S
    Rätsch, G
    Tsuda, K
    Schölkopf, B
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02): : 181 - 201