Organotypic brain slice cultures to model neurodegenerative proteinopathies

被引:77
作者
Croft, C. L. [1 ,2 ]
Futch, H. S. [1 ,2 ]
Moore, B. D. [1 ,2 ]
Golde, T. E. [1 ,2 ,3 ]
机构
[1] Univ Florida, Coll Med, Dept Neurosci, Gainesville, FL 32610 USA
[2] Univ Florida, Coll Med, Ctr Translat Res Neurodegenerat Dis, Gainesville, FL 32610 USA
[3] Univ Florida, Coll Med, McKnight Brain Inst, Gainesville, FL 32610 USA
基金
美国国家卫生研究院;
关键词
Amyloid-beta; Organotypic brain slice cultures; Tau; Neurodegeneration; Proteinopathies; Alzheimer's disease; Microglia; Recombinant adeno-associated virus; FIBRILLARY ACIDIC PROTEIN; TRIPLE-TRANSGENIC MODEL; A-BETA; ALZHEIMERS-DISEASE; HIPPOCAMPAL SLICES; ALPHA-SYNUCLEIN; IN-VITRO; NEUROFIBRILLARY TANGLES; PLAQUE-FORMATION; NEURONAL LOSS;
D O I
10.1186/s13024-019-0346-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Organotypic slice cultures of brain or spinal cord have been a longstanding tool in neuroscience research but their utility for understanding Alzheimer's disease (AD) and other neurodegenerative proteinopathies has only recently begun to be evaluated. Organotypic brain slice cultures (BSCs) represent a physiologically relevant three-dimensional model of the brain. BSCs support all the central nervous system (CNS) cell types and can be produced from brain areas involved in neurodegenerative disease. BSCs can be used to better understand the induction and significance of proteinopathies underlying the development and progression of AD and other neurodegenerative disorders, and in the future may serve as bridging technologies between cell culture and in vivo experiments for the development and evaluation of novel therapeutic targets and strategies. We review the initial development and general use of BSCs in neuroscience research and highlight the advantages of these cultures as an ex vivo model. Subsequently we focus on i) BSC-based modeling of AD and other neurodegenerative proteinopathies ii) use of BSCs to understand mechanisms underlying these diseases and iii) how BSCs can serve as tools to screen for suitable therapeutics prior to in vivo investigations. Finally, we will examine i) open questions regarding the use of such cultures and ii) how emerging technologies such as recombinant adeno-associated viruses (rAAV) may be combined with these models to advance translational research relevant to neurodegenerative disorders.
引用
收藏
页数:11
相关论文
共 107 条
[81]   The role of caspases in Alzheimer's disease; potential novel therapeutic opportunities [J].
Rohn, Troy T. .
APOPTOSIS, 2010, 15 (11) :1403-1409
[82]   Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease [J].
Schwarz, Niklas ;
Uysal, Betuel ;
Welzer, Marc ;
Bahr, Jacqueline C. ;
Layer, Nikolas ;
Loeffler, Heidi ;
Stanaitis, Kornelijus ;
Harshad, P. A. ;
Weber, Yvonne G. ;
Hedrich, Ulrike B. S. ;
Honegger, Juergen B. ;
Skodras, Angelos ;
Becker, Albert J. ;
Wuttke, Thomas, V ;
Koch, Henner .
ELIFE, 2019, 8
[83]   The amyloid hypothesis of Alzheimer's disease at 25years [J].
Selkoe, Dennis J. ;
Hardy, John .
EMBO MOLECULAR MEDICINE, 2016, 8 (06) :595-608
[84]   Postnatal expression pattern of calcium-binding proteins in organotypic thalamic cultures and in the dorsal thalamus in vivo [J].
Sieg, F ;
Obst, K ;
Gorba, T ;
Riederer, B ;
Pape, HC ;
Wahle, P .
DEVELOPMENTAL BRAIN RESEARCH, 1998, 110 (01) :83-95
[85]   Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease [J].
Sims, Rebecca ;
van der Lee, Sven J. ;
Naj, Adam C. ;
Bellenguez, Celine ;
Badarinarayan, Nandini ;
Jakobsdottir, Johanna ;
Kunkle, Brian W. ;
Boland, Anne ;
Raybould, Rachel ;
Bis, Joshua C. ;
Martin, Eden R. ;
Grenier-Boley, Benjamin ;
Heilmann-Heimbach, Stefanie ;
Chouraki, Vincent ;
Kuzma, Amanda B. ;
Sleegers, Kristel ;
Vronskaya, Maria ;
Ruiz, Agustin ;
Graham, Robert R. ;
Olaso, Robert ;
Hoffmann, Per ;
Grove, Megan L. ;
Vardarajan, Badri N. ;
Hiltunen, Mikko ;
Noethen, Markus M. ;
White, Charles C. ;
Hamilton-Nelson, Kara L. ;
Epelbaum, Jacques ;
Maier, Wolfgang ;
Choi, Seung-Hoan ;
Beecham, Gary W. ;
Dulary, Cecile ;
Herms, Stefan ;
Smith, Albert V. ;
Funk, Cory C. ;
Derbois, Celine ;
Forstner, Andreas J. ;
Ahmad, Shahzad ;
Li, Hongdong ;
Bacq, Delphine ;
Harold, Denise ;
Satizabal, Claudia L. ;
Valladares, Otto ;
Squassina, Alessio ;
Thomas, Rhodri ;
Brody, Jennifer A. ;
Qu, Liming ;
Sanchez-Juan, Pascual ;
Morgan, Taniesha ;
Wolters, Frank J. .
NATURE GENETICS, 2017, 49 (09) :1373-+
[86]   Differential Subcellular Targeting of Glutamate Receptor Subtypes during Homeostatic Synaptic Plasticity [J].
Soares, Cary ;
Lee, Kevin F. H. ;
Nassrallah, Wissam ;
Beique, Jean-Claude .
JOURNAL OF NEUROSCIENCE, 2013, 33 (33) :13547-13559
[87]   Characterization of Cortical Neuronal and Glial Alterations during Culture of Organotypic Whole Brain Slices from Neonatal and Mature Mice [J].
Staal, Jerome A. ;
Alexander, Samuel R. ;
Liu, Yao ;
Dickson, Tracey D. ;
Vickers, James C. .
PLOS ONE, 2011, 6 (07)
[88]   A SIMPLE METHOD FOR ORGANOTYPIC CULTURES OF NERVOUS-TISSUE [J].
STOPPINI, L ;
BUCHS, PA ;
MULLER, D .
JOURNAL OF NEUROSCIENCE METHODS, 1991, 37 (02) :173-182
[89]   Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies [J].
Strang, Kevin H. ;
Croft, Cara L. ;
Sorrentino, Zachary A. ;
Chakrabarty, Paramita ;
Golde, Todd E. ;
Giasson, Benoit I. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (07) :2408-2421
[90]   Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: A potential model system to study neuroprotection [J].
Su, Tao ;
Paradiso, Beatrice ;
Long, Yue-Sheng ;
Liao, Wei-Ping ;
Simonato, Michele .
BRAIN RESEARCH, 2011, 1385 :68-76