Generalized twisted quantum doubles and the McKay Correspondence

被引:2
作者
Goff, Chris [2 ]
Mason, Geoffrey [1 ]
机构
[1] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[2] Univ Pacific, Stockton, CA 95211 USA
关键词
Generalized twisted quantum doubles; McKay Correspondence; ALGEBRAS;
D O I
10.1016/j.jalgebra.2010.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of quasiHopf algebras which we call generalized twisted quantum doubles. They are abelian extensions H = Cinverted right perpendicular (G) over bar inverted left perpendicular* infinity Cinverted right perpendicularGinverted left perpendicular (G is a finite group, (G) over bar a homomorphic image, and * denotes the dual algebra), possibly twisted by a 3-cocycle, and are a natural generalization of the twisted quantum double construction of Dijkgraaf, Pasquier and Roche. We show that if G is a subgroup of SU2(C) then H exhibits an orbifold McKay Correspondence: certain fusion rules of H define a graph with connected components indexed by conjugacy classes of (G) over bar, each connected component being an extended affine Diagram of type ADE whose McKay correspondent is the subgroup of G stabilizing an element in the conjugacy class. This reduces to the original McKay Correspondence when (G) over bar = 1. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3007 / 3016
页数:10
相关论文
共 9 条
  • [1] Fusion rules for the vertex operator algebras M(1)+ and VL+
    Abe, T
    Dong, CY
    Li, HS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) : 171 - 219
  • [2] [Anonymous], 1990, NUCL PHYS B S
  • [3] Brown K. S., 1982, GRAD TEXTS MATH, V87
  • [4] Francesco P., 1997, Conformal field theory
  • [5] Ito Y, 1996, HIGHER DIMENSIONAL COMPLEX VARIETIES, P221
  • [6] Computing the Frobenius-Schur indicator for abelian extensions of Hopf algebras
    Kashina, Y
    Mason, G
    Montgomery, S
    [J]. JOURNAL OF ALGEBRA, 2002, 251 (02) : 888 - 913
  • [7] Kassel C., 1995, GRAD TEXTS MATH, V155
  • [8] McKay J., 1980, P S PURE MATH, V37, P183, DOI MR 82e: 20014 Zbl 0451.05026
  • [9] [No title captured]