Ensemble Kernel Principal Component Analysis for Improved Nonlinear Process Monitoring

被引:55
作者
Li, Nan [1 ]
Yang, Yupu
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
STATISTICAL PROCESS-CONTROL; PARTIAL LEAST-SQUARES; FAULT-DETECTION; DIAGNOSIS; PCA; IDENTIFICATION;
D O I
10.1021/ie503034j
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Kernel principal component analysis (KPCA) has been widely applied to nonlinear process monitoring. Conventionally, a single Gaussian kernel function with the width parameter determined empirically is selected to build a single KPCA model. Obviously, it is very blind to determine only a single Gaussian kernel function only by experience, especially when the fault information is unavailable. If a poor Gaussian kernel function is selected unfortunately, the detection performance may be degraded greatly. Furthermore, a single kernel function usually cannot be most effective for all faults, i.e., different faults may need different width parameters to maximize their respective monitoring performance. To address these issues, we try to improve the KPCA-based process monitoring method by incorporating the ensemble learning approach with Bayesian inference strategy. As a result, the monitoring performance is not only more robust to the width parameter selection but also significantly enhanced. This is validated by two case studies, a simple nonlinear process and the Tennessee Eastman benchmark process.
引用
收藏
页码:318 / 329
页数:12
相关论文
共 49 条
[1]  
[Anonymous], MACH LEARNING ACTION
[2]  
Braatz R. D., 2000, ADV IND CON
[3]   Nonlinear process monitoring using JITL-PCA [J].
Cheng, C ;
Chiu, MS .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 76 (01) :1-13
[4]   Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J].
Chiang, LH ;
Russell, EL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) :243-252
[5]   Fault identification for process monitoring using kernel principal component analysis [J].
Cho, JH ;
Lee, JM ;
Choi, SW ;
Lee, D ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) :279-288
[6]   Fault detection and identification of nonlinear processes based on kernel PCA [J].
Choi, SW ;
Lee, C ;
Lee, JM ;
Park, JH ;
Lee, IB .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (01) :55-67
[7]   Nonlinear dynamic process monitoring based on dynamic kernel PCA [J].
Choi, SW ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5897-5908
[8]   Improved kernel principal component analysis for fault detection [J].
Cui, Peiling ;
Li, Junhong ;
Wang, Guizeng .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) :1210-1219
[9]   Nonlinear principal component analysis - Based on principal curves and neural networks [J].
Dong, D ;
McAvoy, TJ .
COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 (01) :65-78
[10]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255