For an oriented manifold M whose dimension is less than 4, we use the contractibility of certain complexes associated to its submanifolds to cut M into simpler pieces in order to do local to global arguments. In particular, in these dimensions, we give a different proof of a deep theorem of Thurston in foliation theory that says the natural map between classifying spaces BHomeo(delta)(M) -> BHomeo(M) induces a homology isomorphism where Homeo(delta)(M) denotes the group of homeomorphisms of M made discrete. Our proof shows that in low dimensions, Thurston's theorem can be proved without using foliation theory. Finally, we show that this technique gives a new perspective on the homotopy type of homeomorphism groups in low dimensions. In particular, we give a different proof of Hacher's theorem that the homeomorphism groups of Haken 3-manifolds with boundary are homotopically discrete without using his disjunction techniques.