Quasi-symmetric functions as polynomial functions on Young diagrams

被引:4
作者
Aval, Jean-Christophe [1 ]
Feray, Valentin [2 ]
Novelli, Jean-Christophe [3 ]
Thibon, Jean-Yves [3 ]
机构
[1] Univ Bordeaux 1, LaBRI, F-33405 Talence, France
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[3] Univ Paris Est Marne La Vallee, Inst Gaspard Monge, F-77454 Marne La Vallee 2, France
关键词
Quasi-symmetric functions; Functions on Young diagrams; Evaluation on virtual alphabets; COMBINATORIAL INTERPRETATION; CHARACTERS;
D O I
10.1007/s10801-014-0549-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the most general form of a smooth function on Young diagrams, that is, a polynomial in the interlacing or multirectangular coordinates whose value depends only on the shape of the diagram. We prove that the algebra of such functions is isomorphic to quasi-symmetric functions, and give a noncommutative analog of this result.
引用
收藏
页码:669 / 706
页数:38
相关论文
共 25 条
[1]  
[Anonymous], 1996, St. Petersburg Math. J.
[2]  
[Anonymous], 2013, The On-Line Encyclopedia of Integer Sequences
[3]  
[Anonymous], NATO SCI SERIES
[4]  
[Anonymous], J ALGEBRA
[5]  
[Anonymous], 2003, Sem. Lothar. Combin.
[6]  
[Anonymous], PUBLICATIONS LACIM
[7]  
[Anonymous], FPSAC 06 SAN DIEG
[8]  
[Anonymous], 1991, Graduate texts in mathematics
[9]  
[Anonymous], 1984, Combinatorics and algebra, DOI DOI 10.1090/CONM/034/777705
[10]  
Cartier P, 2002, ASTERISQUE, P137