Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes problem

被引:14
作者
Amoura, K.
Azaieez, M.
Bernardi, C.
Chorti, N.
Saadi, S.
机构
[1] Univ Badji Mokhtar, Fac Sci, Dept Math, Annaba 23000, Algeria
[2] Site ENSCPB, CNRS, Lab TREFLE, UMR 8508, F-33607 Pessac, France
[3] Univ Paris 06, F-75252 Paris 05, France
[4] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[5] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
D O I
10.1007/s10092-007-0135-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The two-dimensional Navier-Stokes equations, when subject to non-standard boundary conditions which involve the normal component of the velocity and the vorticity, admit a variational formulation with three independent unknowns, the vorticity, velocity and pressure. We propose a discretization of this problem by spectral element methods. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical experiments confirm the interest of the discretization.
引用
收藏
页码:165 / 188
页数:24
相关论文
共 18 条
[1]  
Amara M., 2004, Computing and Visualization in Science, V6, P47, DOI 10.1007/s00791-003-0107-y
[2]   Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem [J].
Amoura, Karima ;
Bernardi, Christine ;
Chorfi, Nejmeddine .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05) :897-921
[3]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[4]  
2-B
[5]   Spectral discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes equations [J].
Azaiez, Mejdi ;
Bernardi, Christine ;
Chorfi, Nejmeddine .
NUMERISCHE MATHEMATIK, 2006, 104 (01) :1-26
[6]  
Bernardi C, 1997, Handbook of numerical analysis, VV, DOI [10.1016/S1570-8659(97)80003-8, DOI 10.1016/S1570-8659(97)80003-8]
[7]  
BERNARDI C, UNPUB INCOMPRESSIBLE
[8]   Spectral discretization of the vorticity, velocity, and pressure formulation of the Stokes problem [J].
Bernardi, Christine ;
Chorfi, Nejmeddine .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :826-850
[9]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[10]   A vector projection method for solving the Navier-Stokes equations [J].
Caltagirone, JP ;
Breil, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (11) :1179-1184