Dirichlet matrices: Determinants, permanents and the Factorisatio Numerorum problem

被引:3
作者
de Camargo, Andre Pierro [1 ]
机构
[1] Fed Univ ABC Reg, Ctr Math Cognit & Comp Sci, Sao Paulo, Brazil
关键词
Dirichlet matrices; Redheffer matrices; Mertens function; Factorisatio Numerorum; Riemann hypothesis; NUMBER;
D O I
10.1016/j.laa.2021.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dirichlet matrices are strongly connected to some important problems in Number Theory, such as the Prime Number Theorem, the Riemann Hypothesis and Kalmar's Factorisatio Numerorum problem. In this note, we obtain some recurrences for the determinants and permanents of Dirichlet matrices that allows us to obtain information about the asymptotic behavior of the permanents of certain classes of Dirichlet matrices. A generalization of Kalmar's Factorisatio Numerorum problem is obtained. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1991, Combinatorial matrix theory
[2]  
Apostol T.M., 1998, Introduction to analytic number theory
[3]   ON THE SPECTRAL-RADIUS OF A (0,1) MATRIX RELATED TO MERTENS FUNCTION [J].
BARRETT, WW ;
FORCADE, RW ;
POLLINGTON, AD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 :151-159
[4]   SPECTRAL PROPERTIES OF A MATRIX OF REDHEFFER [J].
BARRETT, WW ;
JARVIS, TJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 :673-683
[5]   SOME THEOREMS ON PERMANENT [J].
BRUALDI, RA ;
NEWMAN, M .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1965, B 69 (03) :159-+
[6]   Matrices related to Dirichlet series [J].
Cardon, David A. .
JOURNAL OF NUMBER THEORY, 2010, 130 (01) :27-39
[7]   ELEMENTARY METHODS IN THE STUDY OF THE DISTRIBUTION OF PRIME-NUMBERS [J].
DIAMOND, HG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :553-589
[8]  
Erdos P, 1944, ANN MATH, V42, P989
[9]  
Haukkanen P., 2000, NOTES NUMBER THEORY, V6, p118?124
[10]   Distribution of the number of factors in random ordered factorizations of integers [J].
Hwang, HK .
JOURNAL OF NUMBER THEORY, 2000, 81 (01) :61-92