A study of nonlinear problems for the p-Laplacian in Rn via Ricceri's principle

被引:4
作者
El Manouni, Said [1 ]
机构
[1] Al Imam Univ, Fac Sci, Dept Math, Riyadh 11623, Saudi Arabia
关键词
p-Laplacian; Multiple nontrivial solutions; Ricceri's principle; Regularity result;
D O I
10.1016/j.na.2011.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear eigenvalue problems for the p-Laplacian: -div (a(x)vertical bar del u vertical bar(p-2)del u) = lambda f(x, u) + mu g(x, u) in R-n lambda, mu > 0, lim(vertical bar x vertical bar ->infinity) u = 0, where 1 < p < n, lambda, mu > 0, a is a measurable bounded function, and f and g are nonlinearities having subcritical growth with respect to u. We prove multiple nontrivial solutions using a recent principle of Ricceri (2009) [10]. A regularity result is also established. (c) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4496 / 4502
页数:7
相关论文
共 12 条