Replacing Fossil Carbon in the Production of Ferroalloys with a Focus on Bio-Based Carbon: A Review

被引:26
作者
Sommerfeld, Marcus [1 ]
Friedrich, Bernd [1 ]
机构
[1] Inst RWTH Aachen Univ, IME Proc Met & Met Recycling, D-52056 Aachen, Germany
关键词
biomass; nickel; manganese; silicon; chromium; ilmenite; submerged arc furnace; greenhouse gas; ferroalloys; bio-based carbon; NICKEL LATERITE ORE; MANGANESE-DIOXIDE ORE; PIG-IRON PRODUCTION; REDUCTION KINETICS; COMPOSITE PELLETS; CARBOTHERMIC REDUCTION; FERRONICKEL PRODUCTION; SELECTIVE REDUCTION; BIOMASS PYROLYSIS; REDUCING AGENT;
D O I
10.3390/min11111286
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The production of ferroalloys and alloys like ferronickel, ferrochromium, ferromanganese, silicomanganese, ferrosilicon and silicon is commonly carried out in submerged arc furnaces. Submerged arc furnaces are also used to upgrade ilmenite by producing pig iron and a titania-rich slag. Metal containing resources are smelted in this furnace type using fossil carbon as a reducing agent, which is responsible for a large amount of direct CO2 emissions in those processes. Instead, renewable bio-based carbon could be a viable direct replacement of fossil carbon currently investigated by research institutions and companies to lower the CO2 footprint of produced alloys. A second option could be the usage of hydrogen. However, hydrogen has the disadvantages that current production facilities relying on solid reducing agents need to be adjusted. Furthermore, hydrogen reduction of ignoble metals like chromium, manganese and silicon is only possible at very low H2O/H-2 partial pressure ratios. The present article is a comprehensive review of the research carried out regarding the utilization of bio-based carbon for the processing of the mentioned products. Starting with the potential impact of the ferroalloy industry on greenhouse gas emissions, followed by a general description of bio-based reducing agents and unit operations covered by this review, each following chapter presents current research carried out to produce each metal. Most studies focused on pre-reduction or solid-state reduction except the silicon industry, which instead had a strong focus on smelting up to an industrial-scale and the design of bio-based carbon for submerged arc furnace processes. Those results might be transferable to other submerged arc furnace processes as well and could help to accelerate research to produce other metals. Deviations between the amount of research and scale of tests for the same unit operation but different metal resources were identified and closer cooperation could be helpful to transfer knowledge from one area to another. Life cycle assessment to produce ferronickel and silicon already revealed the potential of bio-based reducing agents in terms of greenhouse gas emissions, but was not carried out for other metals until now.
引用
收藏
页数:39
相关论文
共 181 条
[1]   Reduction of low grade iron ore pellet using palm kernel shell [J].
Abd Rashid, Rusila Zamani ;
Salleh, Hamzah Mohd ;
Ani, Mohd Hanafi ;
Yunus, Nurul Azhani ;
Akiyama, Tomohiro ;
Purwanto, Hadi .
RENEWABLE ENERGY, 2014, 63 :617-623
[2]  
Abidin F., 2019, IOP Conference Series: Materials Science and Engineering, V602, DOI 10.1088/1757-899X/602/1/012080
[3]   Biomass Pyrolysis Solids as Reducing Agents: Comparison with Commercial Reducing Agents [J].
Adrados, Aitziber ;
De Marco, Isabel ;
Lopez-Urionabarrenechea, Alexander ;
Solar, Jon ;
Caballero, Blanca M. ;
Gastelu, Naia .
MATERIALS, 2016, 9 (01)
[4]   The influence of palm kernel shell mass ratio as a reducing agent in the lateritic nickel ore carbothermic reduction process [J].
Adzhani, Silmina ;
Hidayanti, Risty ;
Maksum, Ahmad ;
Permana, Sulaksana ;
Soedarsono, Johny Wahyuadi .
2ND INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC) 2017, 2018, 105
[5]   Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor [J].
Agirre, I. ;
Griessacher, T. ;
Roesler, G. ;
Antrekowitsch, J. .
FUEL PROCESSING TECHNOLOGY, 2013, 106 :114-121
[6]   Study on Biomass Performance in Reduction of Nickel Laterite from Pomalaa, Sulawesi Tenggara [J].
Al Rasyid, Muh Harun ;
Rizky, Ahmad R. ;
Diga, Andreas P. P. ;
Petrus, Himawan T. B. M. .
ADVANCES OF SCIENCE AND TECHNOLOGY FOR SOCIETY, 2016, 1755
[7]   Effect of flux addition and reductant type in smelting process of Indonesian limonite ore in electric arc furnace [J].
Andika, R. ;
Astuti, W. ;
Syafriadi ;
Nurjaman, F. .
2ND MINERAL PROCESSING AND TECHNOLOGY INTERNATIONAL CONFERENCE, 2019, 478
[8]  
[Anonymous], 2019, Sustainability report 2019
[9]  
[Anonymous], 2017, SUSTAINABILITY REPOR
[10]  
[Anonymous], 2018, SUSTAINABILITY REPOR