Dendritic cells in cancer immunology and immunotherapy

被引:1226
作者
Wculek, Stefanie K. [1 ]
Cueto, Francisco J. [1 ]
Mujal, Adriana M. [2 ,7 ]
Melero, Ignacio [3 ,4 ,5 ,6 ]
Krummel, Matthew F. [2 ]
Sancho, David [1 ]
机构
[1] CNIC, Immunobiol Lab, Madrid, Spain
[2] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA
[3] Univ Navarra, Ctr Appl Med Res, Div Immunol & Immunotherapy, Pamplona, Spain
[4] Inst Invest Sanitaria Navarra, Pamplona, Spain
[5] Univ Navarra, Univ Clin, Pamplona, Spain
[6] Ctr Invest Biomed Red Canc, Madrid, Spain
[7] Mem Sloan Kettering Canc Ctr, Immunol Program, 1275 York Ave, New York, NY 10021 USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
ANTIGEN CROSS-PRESENTATION; CD8(+) T-CELLS; IMMUNE-RESPONSES; ANTITUMOR IMMUNITY; BETA-CATENIN; FLT3; LIGAND; ANTICANCER CHEMOTHERAPY; COINHIBITORY RECEPTOR; I INTERFERON; VACCINES;
D O I
10.1038/s41577-019-0210-z
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.
引用
收藏
页码:7 / 24
页数:18
相关论文
共 166 条
  • [31] Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets
    Chiang, Meng-Chieh
    Tullett, Kirsteen M.
    Lee, Yoke Seng
    Idris, Adi
    Ding, Yitian
    McDonald, Kylie J.
    Kassianos, Andrew
    Rojas, Ingrid M. Leal
    Jeet, Varinder
    Lahoud, Mireille H.
    Radford, Kristen J.
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (02) : 329 - 339
  • [32] Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1
    Chiba, Shigeki
    Baghdadi, Muhammad
    Akiba, Hisaya
    Yoshiyama, Hironori
    Kinoshita, Ichiro
    Dosaka-Akita, Hirotoshi
    Fujioka, Yoichiro
    Ohba, Yusuke
    Gorman, Jacob V.
    Colgan, John D.
    Hirashima, Mitsuomi
    Uede, Toshimitsu
    Takaoka, Akinori
    Yagita, Hideo
    Jinushi, Masahisa
    [J]. NATURE IMMUNOLOGY, 2012, 13 (09) : 832 - 842
  • [33] Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy
    Chow, Melvyn T.
    Ozga, Aleksandra J.
    Servis, Rachel L.
    Frederick, Dennie T.
    Lo, Jennifer A.
    Fisher, David E.
    Freeman, Gordon J.
    Boland, Genevieve M.
    Luster, Andrew D.
    [J]. IMMUNITY, 2019, 50 (06) : 1498 - +
  • [34] CD31 is a key coinhibitory receptor in the development of immunogenic dendritic cells
    Clement, Marc
    Fornasa, Giulia
    Guedj, Kevin
    Ben Mkaddem, Sanae
    Gaston, Anh-Thu
    Khallou-Laschet, Jamila
    Morvan, Marion
    Nicoletti, Antonino
    Caligiuri, Giuseppina
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (12) : E1101 - E1110
  • [35] Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity
    Cohen, AD
    Diab, A
    Perales, MA
    Wolchok, JD
    Rizzuto, G
    Merghoub, T
    Huggins, D
    Liu, CL
    Turk, MJ
    Restifo, NP
    Sakaguchi, S
    Houghton, AN
    [J]. CANCER RESEARCH, 2006, 66 (09) : 4904 - 4912
  • [36] Human dendritic cell subsets: an update
    Collin, Matthew
    Bigley, Venetia
    [J]. IMMUNOLOGY, 2018, 154 (01) : 3 - 20
  • [37] BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells
    Combes, Alexis
    Camosseto, Voahirana
    N'Guessan, Prudence
    Arguello, Rafael J.
    Mussard, Julie
    Caux, Christophe
    Bendriss-Vermare, Nathalie
    Pierre, Philippe
    Gatti, Evelina
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [38] ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis
    Cubillos-Ruiz, Juan R.
    Silberman, Pedro C.
    Rutkowski, Melanie R.
    Chopra, Sahil
    Perales-Puchalt, Alfredo
    Song, Minkyung
    Zhang, Sheng
    Bettigole, Sarah E.
    Gupta, Divya
    Holcomb, Kevin
    Ellenson, Lora H.
    Caputo, Thomas
    Lee, Ann-Hwee
    Conejo-Garcia, Jose R.
    Glimcher, Laurie H.
    [J]. CELL, 2015, 161 (07) : 1527 - 1538
  • [39] Inflammatory cytokines as a third signal for T cell activation
    Curtsinger, Julie M.
    Mescher, Matthew F.
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2010, 22 (03) : 333 - 340
  • [40] Enhancing the immunostimulatory function of dendritic cells by transfection with rnRNA encoding OX40 ligand
    Dannull, J
    Nair, S
    Su, Z
    Boczkowski, D
    DeBeck, C
    Yang, BJ
    Gilboa, E
    Vieweg, J
    [J]. BLOOD, 2005, 105 (08) : 3206 - 3213