Calibrated nanoscale capacitance measurements using a scanning microwave microscope

被引:121
作者
Huber, H. P. [2 ]
Moertelmaier, M. [1 ]
Wallis, T. M. [3 ]
Chiang, C. J. [3 ,4 ]
Hochleitner, M. [2 ]
Imtiaz, A. [3 ]
Oh, Y. J. [2 ]
Schilcher, K. [5 ]
Dieudonne, M. [1 ]
Smoliner, J. [6 ]
Hinterdorfer, P. [2 ]
Rosner, S. J. [1 ]
Tanbakuchi, H. [1 ]
Kabos, P. [3 ]
Kienberger, F. [1 ]
机构
[1] Agilent Technol, Santa Clara, CA 95051 USA
[2] Univ Linz, Christian Doppler Lab Nanoscop Methods Biophys, A-4040 Linz, Austria
[3] Natl Inst Stand & Technol, Electromagnet Div, Boulder, CO 80305 USA
[4] Natl Changhua Univ Educ, Dept Elect Engn, Changhua 500, Taiwan
[5] Upper Austria Univ Appl Sci, A-4020 Linz, Austria
[6] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
关键词
SILICON;
D O I
10.1063/1.3491926
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A scanning microwave microscope (SMM) for spatially resolved capacitance measurements in the attofarad-to-femtofarad regime is presented. The system is based on the combination of an atomic force microscope (AFM) and a performance network analyzer (PNA). For the determination of absolute capacitance values from PNA reflection amplitudes, a calibration sample of conductive gold pads of various sizes on a SiO2 staircase structure was used. The thickness of the dielectric SiO2 staircase ranged from 10 to 200 nm. The quantitative capacitance values determined from the PNA reflection amplitude were compared to control measurements using an external capacitance bridge. Depending on the area of the gold top electrode and the SiO2 step height, the corresponding capacitance values, as measured with the SMM, ranged from 0.1 to 22 fF at a noise level of similar to 2 aF and a relative accuracy of 20%. The sample capacitance could be modeled to a good degree as idealized parallel plates with the SiO2 dielectric sandwiched in between. The cantilever/sample stray capacitance was measured by lifting the tip away from the surface. By bringing the AFM tip into direct contact with the SiO2 staircase structure, the electrical footprint of the tip was determined, resulting in an effective tip radius of similar to 60 nm and a tip-sample capacitance of similar to 20 aF at the smallest dielectric thickness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491926]
引用
收藏
页数:9
相关论文
共 24 条
[1]  
Anlage S.M., 2007, Scanning Probe Microscopy, Electrical and Electromechanical Phenomena at the Nanoscale, V1, P215, DOI DOI 10.1007/978-0-387-28668-6_8
[2]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[3]   Quantitative scanning capacitance spectroscopy [J].
Brezna, W ;
Schramboeck, M ;
Lugstein, A ;
Harasek, S ;
Enichlmair, H ;
Bertagnolli, E ;
Gornik, E ;
Smoliner, J .
APPLIED PHYSICS LETTERS, 2003, 83 (20) :4253-4255
[4]   Tip geometry effects in scanning capacitance microscopy on GaAs Schottky and metal-oxide-semiconductor-type junctions [J].
Eckhardt, C. ;
Brezna, W. ;
Bethge, O. ;
Bertagnolli, E. ;
Smoliner, J. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[5]   Quantitative microwave near-field microscopy of dielectric properties [J].
Gao, C ;
Xiang, XD .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (11) :3846-3851
[6]   Quantitative microwave evanescent microscopy [J].
Gao, C ;
Duewer, F ;
Xiang, XD .
APPLIED PHYSICS LETTERS, 1999, 75 (19) :3005-3007
[7]   Nanoscale capacitance microscopy of thin dielectric films [J].
Gomila, G. ;
Toset, J. ;
Fumagalli, L. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[8]   A novel STM-assisted microwave microscope with capacitance and loss imaging capability [J].
Imtiaz, A ;
Anlage, SM .
ULTRAMICROSCOPY, 2003, 94 (3-4) :209-216
[9]   Nanometer-scale material contrast imaging with a near-field microwave microscope [J].
Imtiaz, Atif ;
Anlage, Steven M. ;
Barry, John D. ;
Melngailis, John .
APPLIED PHYSICS LETTERS, 2007, 90 (14)
[10]   Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement [J].
Karbassi, A. ;
Ruf, D. ;
Bettermann, A. D. ;
Paulson, C. A. ;
van der Weide, Daniel W. ;
Tanbakuchi, H. ;
Stancliff, R. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (09)