An exact solution of a limit case Stefan problem governed by a fractional diffusion equation

被引:63
作者
Voller, V. R. [1 ]
机构
[1] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55455 USA
关键词
Stefan problem; Anomalous diffusion; Fractional derivative; DENDRITIC GROWTH; ENTHALPY METHOD; SIMULATION; CONVECTION; FRONT; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2010.07.038
中图分类号
O414.1 [热力学];
学科分类号
摘要
An anomalous diffusion version of a limit Stefan melting problem is posed. In this problem, the governing equation includes a fractional time derivative of order 0 < beta <= 1 and a fractional space derivative for the flux of order 0 < alpha <= 1. Solution of this fractional Stefan problem predicts that the melt front advance as s = t(gamma), gamma = beta/alpha+1. This result is consistent with fractional diffusion theory and through appropriate choice of the order of the time and space derivatives, is able to recover both sub-diffusion and super-diffusion behaviors for the melt front advance. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5622 / 5625
页数:4
相关论文
共 50 条
[41]   Inverse problem for a space-time fractional diffusion equation: Application of fractional Sturm-Liouville operator [J].
Ali, Muhammad ;
Aziz, Sara ;
Malik, Salman A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) :2733-2747
[43]   Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation [J].
Liang, Yingjie ;
Chen, Wen ;
Magin, Richard L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 453 :327-335
[44]   Applications of the Fractional Sturm-Liouville Difference Problem to the Fractional Diffusion Difference Equation [J].
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana ;
Poskrobko, Anna .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (03) :349-359
[45]   Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative: application to intrinsic arsenic diffusion in germanium [J].
Souigat, A. ;
Korichi, Z. ;
Meftah, M. Tayeb .
REVISTA MEXICANA DE FISICA, 2024, 70 (01)
[46]   Lie Symmetries With Exact Solution for Time-Fractional Foam Drainage Equation [J].
Simon, S. Gimnitz ;
Bira, B. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) :5474-5482
[47]   AN EXACT SOLUTION OF THE SPHERICAL WAVE EQUATION IN D-DIMENSIONAL FRACTIONAL SPACE [J].
Zubair, M. ;
Mughal, M. J. ;
Naqvi, Q. A. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2011, 25 (10) :1481-1491
[48]   Exact solution of Klein-Gordon equation in fractional-dimensional space [J].
Merad, H. ;
Merghadi, F. ;
Merad, A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (33)
[49]   Exact and Approximate Solutions of A Fractional Diffusion Problem with Fixed Space Memory Length [J].
Klimek, Malgorzata ;
Blaszczyk, Tomasz .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2025, 35 (02) :311-328
[50]   Vacuum solution and quasineutral limit of semiconductor drift-diffusion equation [J].
Ri, Jinmyong ;
Huang, Feimin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) :1523-1538