On C∞-Compactness of Quasiconformal Harmonic Maps on the Poincare Disk

被引:0
作者
Yao, Guowu [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic map; Quasiconformal map; Barycentric extension; UNIVERSAL TEICHMULLER SPACE; SURFACES; MAPPINGS;
D O I
10.1007/s40315-015-0148-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {f(n) : D -> D} be a sequence of K-quasiconformal harmonic maps on the unit disk D with respect to the Poincare metric. It is known that there is a subsequence of {f(n)}that uniformly converges on (D) over bar and the limit function is either a K-quasiconformal harmonic map of the Poincare disk or a constant. In this paper, it is shown that, if the limit function is not a constant, the subsequence can be chosen such that its derivative sequence of arbitrary order uniformly converges to the corresponding derivative of the limit function on compact subsets of D.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 16 条