GPU-accelerated discontinuous Galerkin methods on hybrid meshes

被引:52
作者
Chan, Jesse [1 ]
Wang, Zheng [1 ]
Modave, Axel [1 ]
Remacle, Jean-Francois [2 ]
Warburton, T. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, 6100 Main St, Houston, TX 77005 USA
[2] Catholic Univ Louvain, Sch Engn, Ave Georges Lemaitre 4, B-1348 Louvain, Belgium
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin; GPU; High order; Hybrid mesh; Timestep restriction; Wave equation; SPECTRAL ELEMENT METHOD; TRACE INEQUALITIES; SHAPE FUNCTIONS; INTEGRATION; ADVECTION;
D O I
10.1016/j.jcp.2016.04.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:142 / 168
页数:27
相关论文
共 49 条
[1]  
Amir-Moez Ali R., 1962, ELEMENTS LINEAR SPAC, V26
[2]  
Baudouin TC, 2014, Advanced Modeling and Simulation in Engineering Sciences, V1, P1, DOI [DOI 10.1186/2213-7467-1-8, 10.1186/2213-7467-1-8]
[3]   SHAPE FUNCTIONS AND INTEGRATION FORMULAS FOR 3-DIMENSIONAL FINITE-ELEMENT ANALYSIS [J].
BEDROSIAN, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 35 (01) :95-108
[4]   Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra [J].
Bergot, Morgane ;
Durufle, Marc .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) :1372-1414
[5]   Higher-order discontinuous Galerkin method for pyramidal elements using orthogonal bases [J].
Bergot, Morgane ;
Durufle, Marc .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (01) :144-169
[6]   High-order optimal edge elements for pyramids, prisms and hexahedra [J].
Bergot, Morgane ;
Durufle, Marc .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :189-213
[7]   Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements [J].
Bergot, Morgane ;
Cohen, Gary ;
Durufle, Marc .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) :345-381
[8]   Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces [J].
Botti, Lorenzo .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (03) :675-703
[9]   Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations [J].
Burman, Erik ;
Ern, Alexandre .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1119-1140
[10]   ORTHOGONAL BASES FOR VERTEX-MAPPED PYRAMIDS [J].
Chan, Jesse ;
Warburton, T. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02) :A1146-A1170