Characteristics of carbon and carbon-nitride nanostructures produced by plasma deposition from ammonia and methane or acetylene

被引:4
作者
Céspedes, JG
Corbella, C
Bertran, E
Viera, G
Galán, M
机构
[1] Univ Barcelona, FEMAN, Dept Fis Aplicada Opt, Barcelona, Spain
[2] MONOCROM SL, Geltru, Spain
关键词
carbon nanostructures; nanotubes; PECVD; electron diffraction (SAED); EELS; HRTEM;
D O I
10.1081/FST-200039434
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon/carbon-nitride nanostructures were deposited by rf plasma enhanced and thermal chemical vapour deposition (PECVD and CVD). The growth of nanostructures was studied under several deposition conditions of negative self-bias (below -600V), C2H2:NH3 and CH4:NH3 ratios (varying from 0.5 to 1.0), substrate (Si and Cu) and substrate temperature (from 650 degrees C to 800 degrees C). It was found that the use of C2H2 or CH4 as the carbon source gave rise, respectively, to carbon nanotubes and carbon-nitride nanorods under similar deposition conditions. The resulting films were characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron energy loss spectroscopy (EELS) and Raman spectroscopy. The results have been discussed in terms of growth deposition conditions.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 11 条
[1]   Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition [J].
Bower, C ;
Zhou, O ;
Zhu, W ;
Werder, DJ ;
Jin, SH .
APPLIED PHYSICS LETTERS, 2000, 77 (17) :2767-2769
[2]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[3]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[4]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[5]  
Edelstein A. S., 1996, NANOMATERIALS SYNTHE, DOI 10.1201/9781482268591
[6]   Controlled low-temperature growth of carbon nanofibres by plasma deposition [J].
Hofmann, S ;
Kleinsorge, B ;
Ducati, C ;
Robertson, J .
NEW JOURNAL OF PHYSICS, 2003, 5 :153.1-153.13
[7]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[8]   Electrostatic deflections and electromechanical resonances of carbon nanotubes [J].
Poncharal, P ;
Wang, ZL ;
Ugarte, D ;
de Heer, WA .
SCIENCE, 1999, 283 (5407) :1513-1516
[9]   Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy [J].
Teo, KBK ;
Chhowalla, M ;
Amaratunga, GAJ ;
Milne, WI ;
Pirio, G ;
Legagneux, P ;
Wyczisk, F ;
Olivier, J ;
Pribat, D .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (01) :116-121
[10]   Multi-walled carbon nanotube-based gas sensors for NH3 detection [J].
Wang, SG ;
Zhang, Q ;
Yang, DJ ;
Sellin, PJ ;
Zhong, GF .
DIAMOND AND RELATED MATERIALS, 2004, 13 (4-8) :1327-1332