DAEANet: Dual auto-encoder attention network for depth map super-resolution

被引:12
作者
Cao, Xiang [1 ]
Luo, Yihao [1 ]
Zhu, Xianyi [2 ]
Zhang, Liangqi [1 ]
Xu, Yan [1 ]
Shen, Haibo [1 ]
Wang, Tianjiang [1 ]
Feng, Qi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Xiangnan Univ, Coll Software & Commun Engn, Chenzhou 423000, Peoples R China
关键词
Depth map super-resolution; Convolutional neural network; Auto-encoder network; Attention mechanism;
D O I
10.1016/j.neucom.2021.04.096
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, depth map super-resolution (DSR) has obtained remarkable performance with the development of convolutional neural networks (CNNs). High-resolution (HR) depth map can be inferred from a low resolution (LR) one with the guidance of its corresponding HR intensity image. However, most of the existing CNNs-based methods unilaterally transfer structures information of guidance image to the input depth map, which ignores the corresponding relations between the depth map and the intensity map. In this paper, we propose a novel dual auto-encoder attention network (DAEANet) for DSR. The proposed DAEANet includes two auto-encoder networks, where guidance auto-encoder network (GAENet) and target auto-encoder network (TAENet) aim to extract feature information from intensity image and depth map. Specifically, all auto-encoder networks are similar and trained simultaneously to ensure structural consistency. Furthermore, to preserve the structure information in the process of training, the attention mechanism is employed to our DAEANet. Extensive experiments on several popular benchmarks show that the proposed DAEANet outperforms existing state-of-the-art algorithms. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:350 / 360
页数:11
相关论文
共 49 条
[1]  
Aodha O.M., 2012, COMPUTER VISION ECCV, DOI [10.1007/978-3-642-33712-3_6, DOI 10.1007/978-3-642-33712-3_6]
[2]   A database and evaluation methodology for optical flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :588-595
[3]   Pose Guided RGBD Feature Learning for 3D Object Pose Estimation [J].
Balntas, Vassileios ;
Doumanoglou, Andreas ;
Sahin, Caner ;
Sock, Juil ;
Kouskouridas, Rigas ;
Kim, Tae-Kyun .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3876-3884
[4]   The Fast Bilateral Solver [J].
Barron, Jonathan T. ;
Poole, Ben .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :617-632
[5]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[6]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[7]  
Diebel J., 2005, P 18 INT C NEUR INF, V18, P291
[8]   Upsampling Range Data in Dynamic Environments [J].
Dolson, Jennifer ;
Baek, Jongmin ;
Plagemann, Christian ;
Thrun, Sebastian .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1141-1148
[9]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[10]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307