Approximation of Solution of Some m-Point Boundary Value Problems on Time Scales

被引:0
作者
Khan, Rahmat Ali [2 ]
Rafique, Mohammad [1 ]
机构
[1] Natl Univ Sci & Technol NUST, Coll Elect & Mech Engn, Dept Basic Sci, Rawalpindi 46000, Pakistan
[2] Natl Univ Sci & Technol NUST, Ctr Adv Math & Phys, Islamabad 46000, Pakistan
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2010年
关键词
GENERALIZED QUASI-LINEARIZATION; POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATION; EXISTENCE;
D O I
10.1155/2010/841643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of upper and lower solutions and the generalized quasilinearization technique for second-order nonlinear m-point dynamic equations on time scales of the type x(Delta Delta)(t) = f(t, x(sigma)), t epsilon [0,1](T) = [0, 1] boolean AND T, x(0) = 0, x(sigma(2)(1)) = Sigma(m-1)(i=1) alpha(i)x(eta(i)), eta(i) epsilon (0,1)(T,) Sigma(m-1)(i=1) alpha(i) <= 1, are developed. A monotone sequence of solutions of linear problems converging uniformly and quadratically to a solution of the problem is obtained.
引用
收藏
页数:11
相关论文
共 26 条
[21]   Approximations and rapid convergence of solutions of nonlinear three point boundary value problems [J].
Khan, Rahmat Ali .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :957-968
[22]   Generalized quasilinearization versus Newton's method [J].
Lakshmikantham, V ;
Vatsala, AS .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (02) :523-530
[23]  
LAKSHMIKANTHAM V, 1998, MATH APPL, V440, P1
[25]   Three point boundary value problems on time scales [J].
Peterson, AC ;
Raffoul, YN ;
Tisdell, CC .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (09) :843-849
[26]  
Tisdell CC, 2005, DYNAM CONT DIS SER A, V12, P595