NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide

被引:216
作者
Park, L
Anrather, J
Zhou, P
Frys, K
Pitstick, R
Younkin, S
Carlson, GA
Iadecola, C
机构
[1] Cornell Univ, Div Neurobiol, Dept Neurol & Neurosci, New York, NY 10021 USA
[2] Mayo Clin Jacksonville, Jacksonville, FL 32224 USA
[3] McLaughlin Res Inst, Great Falls, MT 59405 USA
关键词
Alzheimer's disease; hydroethidine; gp91(phox); Tg2576; cerebral blood flow; reactive oxygen species;
D O I
10.1523/JNEUROSCI.5207-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Overproduction of the amyloid beta (Abeta) peptide is a key factor in the pathogenesis of Alzheimer's disease (AD), but the mechanisms of its pathogenic effects have not been defined. Patients with AD have cerebrovascular alterations attributable to the deleterious effects of Abeta on cerebral blood vessels. We report here that NADPH oxidase, the major source of free radicals in blood vessels, is responsible for the cerebrovascular dysregulation induced by Abeta. Thus, the free-radical production and the associated alterations in vasoregulation induced by Abeta are abrogated by the NADPH oxidase peptide inhibitor gp91ds-tat and are not observed in mice lacking the catalytic subunit of NADPH oxidase (gp91(phox)). Furthermore, oxidative stress and cerebrovascular dysfunction do not occur in transgenic mice overexpressing the amyloid precursor protein but lacking gp91phox. The mechanisms by which NADPH oxidase-derived radicals mediate the cerebrovascular dysfunction involve reduced bioavailability of nitric oxide. Thus, a gp91(phox)-containing NADPH oxidase is the critical link between Abeta and cerebrovascular dysfunction, which may underlie the alteration in cerebral blood flow regulation observed in AD patients.
引用
收藏
页码:1769 / 1777
页数:9
相关论文
共 80 条
[1]   β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
JOURNAL OF NEUROSCIENCE, 2004, 24 (02) :565-575
[2]   S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide [J].
Adachi, T ;
Weisbrod, RM ;
Pimentel, DR ;
Ying, J ;
Sharov, VS ;
Schöneich, C ;
Cohen, RA .
NATURE MEDICINE, 2004, 10 (11) :1200-1207
[3]   L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice [J].
Ayata, C ;
Ma, JY ;
Meng, W ;
Huang, P ;
Moskowitz, MA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (04) :539-541
[4]   NADPH oxidase [J].
Babior, BM .
CURRENT OPINION IN IMMUNOLOGY, 2004, 16 (01) :42-47
[5]  
Bamberger ME, 2003, J NEUROSCI, V23, P2665
[6]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[7]  
BIANCA VD, 1999, J BIOL CHEM, V274, P15493
[8]   Vascular risk factors for Alzheimer's disease: An epidemiologic perspective [J].
Breteler, MMB .
NEUROBIOLOGY OF AGING, 2000, 21 (02) :153-160
[9]   A WHITE MATTER DISORDER IN DEMENTIA OF THE ALZHEIMER TYPE - A PATHOANATOMICAL STUDY [J].
BRUN, A ;
ENGLUND, E .
ANNALS OF NEUROLOGY, 1986, 19 (03) :253-262
[10]   Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces [J].
Busse, R ;
Fleming, I .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2003, 24 (01) :24-29