AP-frames and stationary random processes

被引:1
|
作者
Centeno, Hernan D. [1 ]
Medina, Juan M. [2 ,3 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Matemat, Ave Paseo Colon 850,C1063ACV, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ingn, Dept Matemat, IAM CONICET, Buenos Aires, DF, Argentina
[3] UCA, Fac Ingn & Ciencias Agr, LaBIS UCA, Buenos Aires, DF, Argentina
关键词
AP-frames; Stationary random fields and processes; REPRESENTATION;
D O I
10.1016/j.acha.2022.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that, in general, an AP-frame is an L-2(R)-frame and conversely. Here, in part as a consequence of the Ergodic Theorem, we prove a necessary and sufficient condition for a Gabor system {g(t-k)e(il(t-k)),l is an element of L=omega(0)Z,k is an element of K=t(0)Z} to be an L-2(R)-Frame in terms of Gaussian stationary random processes. In addition, if X=(X(t))(t is an element of R )is a wide sense stationary random process, we study density conditions for the associated stationary sequences {<X,g(k,l)>, l is an element of L,k is an element of K}. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条