Au@TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors

被引:32
作者
Auxilia, Francis Malar [1 ]
Jang, Jaewon [1 ]
Jang, Kyunghoon [1 ]
Song, Hayong [1 ]
Ham, Moon-Ho [1 ,2 ]
机构
[1] GIST, Sch Mat Sci & Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] GIST, Res Inst Solar & Sustainable Energies RISE, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
Core-shell nanoparticle; Graphene; Ternary composite; Anode; Energy storage; HIGH-ENERGY; TIO2; PERFORMANCE; ANODE; SUPERCAPACITOR; STORAGE; NANOPARTICLES; ELECTRODES; AG; NANOCRYSTALS;
D O I
10.1016/j.cej.2019.01.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To meet the overwhelming demands of next-generation energy storage devices, efforts to develop advanced electrode materials with excellent specific capacity/capacitance and cyclic durability are underway. In this study, we develop hierarchical ternary composites based on Au@TiO2 core-shell nanoparticles anchored onto reduced graphene oxide nanosheets through a one-pot hydrothermal method. These composites can be utilized as anodes for electrochemical lithium storage. The ternary composite anodes deliver a high specific capacity of 905 mAh g(-1) at 100 mA g(-1) after 100 cycles, accompanied by good rate capability. Hybrid lithium-ion capacitors with Au@TiO2/reduced graphene oxide anodes and activated carbon cathodes show a maximum energy density of 110 Wh kg(-1) and power density of 11 kW kg(-1), along with excellent capacitance retention of 83%, even after 1000 cycles. This suggests that our composites have potential as electrode materials for high-performance supercapacitors.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 60 条
[1]   Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors [J].
An, Haoran ;
Li, Yu ;
Long, Peng ;
Gao, Yi ;
Qin, Chengqun ;
Cao, Chen ;
Feng, Yiyu ;
Feng, Wei .
JOURNAL OF POWER SOURCES, 2016, 312 :146-155
[2]   Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host [J].
Aravindan, V. ;
Shubha, N. ;
Ling, W. Chui ;
Madhavi, S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (20) :6145-6151
[3]   Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors [J].
Aravindan, V. ;
Chuiling, W. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. ;
Madhavi, S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5808-5814
[4]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[5]   Probing BSA binding to citrate-coated gold nanoparticles and surfaces [J].
Brewer, SH ;
Glomm, WR ;
Johnson, MC ;
Knag, MK ;
Franzen, S .
LANGMUIR, 2005, 21 (20) :9303-9307
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage [J].
Cai, Yi ;
Wang, Hong-En ;
Zhao, Xu ;
Huang, Fei ;
Wang, Chao ;
Deng, Zhao ;
Li, Yu ;
Cao, Guozhong ;
Su, Bao-Lian .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) :10652-10663
[8]   Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance [J].
Cai, Yong ;
Zhao, Bote ;
Wang, Jie ;
Shao, Zongping .
JOURNAL OF POWER SOURCES, 2014, 253 :80-89
[9]   Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries [J].
Cao, Huaqiang ;
Li, Baojun ;
Zhang, Jingxian ;
Lian, Fang ;
Kong, Xianghua ;
Qu, Meizhen .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9759-9766
[10]   Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities [J].
Chen, Jun Song ;
Wang, Zhiyu ;
Dong, Xiao Chen ;
Chen, Peng ;
Lou, Xiong Wen .
NANOSCALE, 2011, 3 (05) :2158-2161