POST CLASSIFICATION USING CELLULAR AUTOMATA FOR LANDSAT IMAGES

被引:0
|
作者
Sarhan, Ebada [1 ]
Khalifa, Eraky [1 ]
Nabil, Ayman M. [2 ]
机构
[1] Helwan Univ, Cairo, Egypt
[2] Misr Inter Univ, Cairo, Egypt
来源
MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8 | 2012年 / 433-440卷
关键词
Cellular Automata; Landsat images; majority filter; Probability Labeling Relaxation;
D O I
10.4028/www.scientific.net/AMR.433-440.5431
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The research presented in this paper aims at improving the accuracy of land-use maps produced from classification of Landsat images of mega cities in developing countries. In other words, the main objective of this paper is to find a suitable post classification technique that gives optimum results for Landsat images of mega cities in developing countries. To reach our goal, the paper presents a classification of two TM-Landsat sub scenes using a traditional statistical classifier (Maximum Likelihood) into four land cover classes (vegetation-water-Desert-Urban); then the accuracy assessment for the produced land-cover map will be calculated. Following to this step, three post processing techniques- Majority Filter, Probability label Relaxation (PLR), and Cellular Automata (CA) - will be applied in order to improve the accuracy of the previously produced land cover map. Finally, the same accuracy assessment measurements will be calculated for the two land-cover maps produced by each of the above post classification techniques. Initial results will show that CA outperformed the other techniques. In this paper we propose a methodology to implement a satellite image post classification Algorithm with cellular Automata.
引用
收藏
页码:5431 / +
页数:2
相关论文
共 50 条
  • [21] Progress, gaps and obstacles in the classification of cellular automata
    Vispoel, Milan
    Daly, Aisling J.
    Baetens, Jan M.
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 432
  • [22] Classification of cellular automata through texture analysis
    da Silva, Nubia Rosa
    Baetens, Jan M.
    da Silva Oliveira, Marcos William
    De Baets, Bernard
    Bruno, Odemir Martinez
    INFORMATION SCIENCES, 2016, 370 : 33 - 49
  • [23] Cellular automata with memory and the density classification task
    Alonso-sanz, R. (ramon.alonso@upm.es), 1600, Old City Publishing (08): : 3 - 4
  • [24] An Application of Cellular Automata: Satellite Image Classification
    Poonkuntran, S.
    Abinaya, V
    Moorthi, Manthira
    Oza, M. P.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1085 - 1093
  • [25] Cellular Automata with Memory and the Density Classification Task
    Alonso-Sanz, Ramon
    JOURNAL OF CELLULAR AUTOMATA, 2013, 8 (3-4) : 283 - 297
  • [26] A FEW AND FAR VERGED CLASSIFICATION IN CELLULAR AUTOMATA
    Akoramurthy, B.
    Arthi, J.
    Kanimozhi, P.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 18 (01): : 85 - 97
  • [27] Texture and pixel-based satellite image classification using cellular automata
    Bindhu, J. S.
    Pramod, K., V
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 9913 - 9937
  • [28] Edge detection of images based on fuzzy cellular automata
    Zhang, Ke
    Li, Zhong
    Zhao, Xiao-Ou
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 2, PROCEEDINGS, 2007, : 289 - +
  • [29] Evolved Cellular Automata for Edge Detection in Grayscale Images
    Enescu, Alina
    Andreica, Anca
    Diosan, Laura
    2019 21ST INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2019), 2020, : 326 - 332
  • [30] Evolving Cellular Automata for Detecting Edges in Hyperspectral Images
    Priego, B.
    Bellas, F.
    Souto, D.
    Lopez-Pena, F.
    Duro, R. J.
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,