POST CLASSIFICATION USING CELLULAR AUTOMATA FOR LANDSAT IMAGES

被引:0
|
作者
Sarhan, Ebada [1 ]
Khalifa, Eraky [1 ]
Nabil, Ayman M. [2 ]
机构
[1] Helwan Univ, Cairo, Egypt
[2] Misr Inter Univ, Cairo, Egypt
来源
MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8 | 2012年 / 433-440卷
关键词
Cellular Automata; Landsat images; majority filter; Probability Labeling Relaxation;
D O I
10.4028/www.scientific.net/AMR.433-440.5431
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The research presented in this paper aims at improving the accuracy of land-use maps produced from classification of Landsat images of mega cities in developing countries. In other words, the main objective of this paper is to find a suitable post classification technique that gives optimum results for Landsat images of mega cities in developing countries. To reach our goal, the paper presents a classification of two TM-Landsat sub scenes using a traditional statistical classifier (Maximum Likelihood) into four land cover classes (vegetation-water-Desert-Urban); then the accuracy assessment for the produced land-cover map will be calculated. Following to this step, three post processing techniques- Majority Filter, Probability label Relaxation (PLR), and Cellular Automata (CA) - will be applied in order to improve the accuracy of the previously produced land cover map. Finally, the same accuracy assessment measurements will be calculated for the two land-cover maps produced by each of the above post classification techniques. Initial results will show that CA outperformed the other techniques. In this paper we propose a methodology to implement a satellite image post classification Algorithm with cellular Automata.
引用
收藏
页码:5431 / +
页数:2
相关论文
共 50 条
  • [1] Classification of Satellite Images Using the Cellular Automata Approach
    Espinola, Moises
    Ayala, Rosa
    Leguizamon, Saturnino
    Menenti, Massimo
    OPEN KNOWLEDGE SOCIETY: A COMPUTER SCIENCE AND INFORMATION SYSTEMS MANIFESTO, 2008, 19 : 521 - +
  • [2] Contextual and Hierarchical Classification of Satellite Images Based on Cellular Automata
    Espinola, Moises
    Piedra-Fernandez, Jose A.
    Ayala, Rosa
    Iribarne, Luis
    Wang, James Z.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02): : 795 - 809
  • [3] Classification of mammography images based on cellular automata and Haralick parameters
    Benmazou S.
    Merouani H.F.
    Layachi S.
    Nedjmeddine B.
    Evolving Systems, 2014, 5 (03) : 209 - 216
  • [4] Encrypting Digital Images Using Cellular Automata
    Martin del Rey, A.
    Rodriguez Sanchez, G.
    de la Villa Cuenca, A.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 78 - 88
  • [5] Satellite Image Classification Using Cellular Automata
    Poonkuntran, S.
    Alli, P.
    Ganesan, T. M. Senthil
    Moorthi, S. Manthira
    Oza, M. P.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (02)
  • [6] Characterization of Texture in Images by Using a Cellular Automata Approach
    Leguizamon, Saturnino
    Espinola, Moises
    Ayala, Rosa
    Iribarne, Luis
    Menenti, Massimo
    ORGANIZATIONAL, BUSINESS, AND TECHNOLOGICAL ASPECTS OF THE KNOWLEDGE SOCIETY PT II, 2010, 112 : 522 - +
  • [7] Scene Text Detection on Images Using Cellular Automata
    Zagoris, Konstantinos
    Pratikakis, Ioannis
    CELLULAR AUTOMATA, ACRI 2012, 2012, 7495 : 514 - 523
  • [8] fMRI Brain Data Classification using Cellular Automata
    Latif, Abdel
    Dalhoum, Abu
    Al-Dhamari, Ibraheem
    NEW ASPECTS OF APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS AND INFORMATICS AND COMMUNICATION, 2010, : 348 - 352
  • [9] Displaying images with cellular automata
    Löwe, JT
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (03) : 713 - 720
  • [10] Computational classification of cellular automata
    Sutner, Klaus
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2012, 41 (06) : 595 - 607