Uniform Lebesgue Constants of Local Spline Approximation

被引:0
作者
Shevaldin, V. T. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620990, Russia
基金
俄罗斯科学基金会;
关键词
Lebesgue constants; local splines; three-point system;
D O I
10.1134/S0081543818090201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a function phi C-1[-h, h] be such that phi(0) = phi'(0) = 0, phi(-x) = phi(x) for x [0; h], and phi(x) is nondecreasing on [0; h]. For any function f: , we consider local splines of the form S(x)=S-phi(f, x)= Sigma(j is an element of Z) y(j)B(phi)(x+3h/2 - jh) (x is an element of R), where y(j) = f(jh), m(h) > 0, and B-phi(x) = m(h) { phi(x), x is an element of[0; h], 2 phi(h) - phi(x - h)-phi(2h - x), x is an element of[h; 2h], phi(3h - x), x is an element of[2h; 3h], 0, x is an element of[0; 3h]. These splines become parabolic, exponential, trigonometric, etc., under the corresponding choice of the function phi. We study the uniform Lebesgue constants L phi = parallel to S parallel to(C)(C) (the norms of linear operators from C to C) of these splines as functions depending on phi and h. In some cases, the constants are calculated exactly on the axis and on a closed interval of the real line (under a certain choice of boundary conditions from the spline S-phi(f, x)).
引用
收藏
页码:196 / 202
页数:7
相关论文
共 12 条
[1]  
Ahlberg J.H., 1972, Teoriya splainov i ee prilozheniya
[2]  
[Anonymous], 2006, METHODS ISOGEOMETRIC
[3]  
Dem'yanovich Yu. K., 2006, MAT MODELIROVANIE, V18, P123
[4]  
Kostousov K. V., 2004, P STEKLOV I MATH
[5]   Approximation by local trigonometric splines [J].
Kostousov, KV ;
Shevaldin, VT .
MATHEMATICAL NOTES, 2005, 77 (3-4) :326-334
[6]  
Leont'ev V. L., 2003, ORTHOGONAL COMPACTLY
[7]   COMPACTLY SUPPORTED SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS [J].
RVACHEV, VA .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) :87-120
[8]  
[Шевалдин В.т. Shevaldin V.t.], 2005, [Сибирский журнал вычислительной математики, Siberian Journal of Numerical Mathematics, Sibirskii zhurnal vychislitel'noi matematiki], V8, P77
[9]  
Shevaldin V. T., 2014, APPROXIMATION LOCAL
[10]  
Shevaldin V. T., 1990, P STEKLOV I MATH, V189, P217