Existence of a Center Manifold in a Practical Domain around L1 in the Restricted Three-Body Problem

被引:25
作者
Capinski, Maciej J. [1 ]
Roldan, Pablo [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[2] ETSEIB UPC, Dept Matemat Aplicada 1, Barcelona 08028, Spain
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2012年 / 11卷 / 01期
关键词
center manifolds; normal forms; celestial mechanics; restricted three-body problem; covering relations; cone conditions; COVERING RELATIONS; SCATTERING MAP;
D O I
10.1137/100810381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method of proving existence of center manifolds within specified domains. The method is based on a combination of topological tools, normal forms, and rigorous computer-assisted computations. We apply our method to obtain a proof of a center manifold in an explicit region around the equilibrium point L-1 in the Earth-Sun planar restricted circular three-body problem.
引用
收藏
页码:285 / 318
页数:34
相关论文
共 50 条
[31]   Local Orbital Elements for the Circular Restricted Three-Body Problem [J].
Peterson, Luke T. ;
Scheeres, Daniel J. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2023, 46 (12) :2275-2289
[32]   Global hypersurfaces of section in the spatial restricted three-body problem [J].
Moreno, Agustin ;
van Koert, Otto .
NONLINEARITY, 2022, 35 (06) :2920-2970
[33]   Chaotic scattering in the restricted three-body problem .1. The Copenhagen problem [J].
Benet, L ;
Trautmann, D ;
Seligman, TH .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 66 (02) :203-228
[34]   The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness [J].
Elbaz I. Abouelmagd ;
M. A. Sharaf .
Astrophysics and Space Science, 2013, 344 :321-332
[35]   The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness [J].
Abouelmagd, Elbaz I. ;
Sharaf, M. A. .
ASTROPHYSICS AND SPACE SCIENCE, 2013, 344 (02) :321-332
[36]   Periodic and Degenerate Orbits Around the Equilibrium Points in the Relativistic Restricted Three-Body Problem [J].
Abd El-Salam, F. A. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A1) :173-192
[37]   On the libration collinear points in the restricted three-body problem [J].
Alzahrani, F. ;
Abouelmagd, Elbaz I. ;
Guirao, Juan L. G. ;
Hobiny, A. .
OPEN PHYSICS, 2017, 15 (01) :58-67
[38]   On families of periodic solutions of the restricted three-body problem [J].
Bruno, Alexander D. ;
Varin, Victor P. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 95 (1-4) :27-54
[39]   The restricted three-body problem: Comments on the rotational effect [J].
Roman, R ;
Roman, SA .
ASTROPHYSICS AND SPACE SCIENCE, 2006, 301 (1-4) :179-184
[40]   The annular twist mapping of the restricted three-body problem [J].
Kummer M. ;
Churchill R.C. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :249-268