Existence of a Center Manifold in a Practical Domain around L1 in the Restricted Three-Body Problem

被引:25
作者
Capinski, Maciej J. [1 ]
Roldan, Pablo [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[2] ETSEIB UPC, Dept Matemat Aplicada 1, Barcelona 08028, Spain
关键词
center manifolds; normal forms; celestial mechanics; restricted three-body problem; covering relations; cone conditions; COVERING RELATIONS; SCATTERING MAP;
D O I
10.1137/100810381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method of proving existence of center manifolds within specified domains. The method is based on a combination of topological tools, normal forms, and rigorous computer-assisted computations. We apply our method to obtain a proof of a center manifold in an explicit region around the equilibrium point L-1 in the Earth-Sun planar restricted circular three-body problem.
引用
收藏
页码:285 / 318
页数:34
相关论文
共 19 条
[1]  
[Anonymous], 2003, SPRINGER MG MATH
[2]  
[Anonymous], 321168 NASAJPL
[3]  
[Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
[4]  
[Anonymous], STUDIES COMPUTATIONA
[5]   The scattering map in the planar restricted three body problem [J].
Canalias, E. ;
Delshams, A. ;
Masdemont, J. J. ;
Roldan, P. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 95 (1-4) :155-171
[6]  
Canalias E, 2006, DISCRETE CONT DYN-A, V14, P261
[7]  
CAPINSKI M. J., 2011, LYAPUNOV ORBITS L2 T
[8]  
CAPINSKI M. J., 2011, COMPUTER ASSISTED PR
[9]   COVERING RELATIONS AND THE EXISTENCE OF TOPOLOGICALLY NORMALLY HYPERBOLIC INVARIANT SETS [J].
Capinski, Maciej J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :705-725
[10]   CONE CONDITIONS AND COVERING RELATIONS FOR TOPOLOGICALLY NORMALLY HYPERBOLIC INVARIANT MANIFOLDS [J].
Capinski, Maciej J. ;
Zgliczynski, Piotr .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (03) :641-670