The Trimeric Autotransporter Adhesin YadA of Yersinia enterocolitica Serotype O:9 Binds Glycan Moieties

被引:7
作者
Meuskens, Ina [1 ]
Leva-Bueno, Juan [2 ]
Millner, Paul [2 ]
Schuetz, Monika [3 ]
Peyman, Sally A. [4 ]
Linke, Dirk [1 ]
机构
[1] Univ Oslo, Sect Genet & Evolutionary Biol, Dept Biosci, Oslo, Norway
[2] Univ Leeds, Sch Biomed Sci, Fac Biol Sci, Leeds, W Yorkshire, England
[3] Univ Tubingen, Interfakultares Inst Mikrobiol & Infekt Med Tubin, Inst Med Mikrobiol & Hyg, Tubingen, Germany
[4] Univ Leeds, Dept Phys & Astron, Mol & Nanoscale Phys Grp, Leeds, W Yorkshire, England
基金
欧盟地平线“2020”;
关键词
trimeric autotransporter adhesin; bacterial adhesion; virulence; extracellular matrix (ECM); adhesion; glycan; ACTIVE EUKARYOTIC PROTEINS; HUMAN PLASMA; VITRONECTIN; HEPARIN; CONFORMATION; BACTERIA; MATRIX;
D O I
10.3389/fmicb.2021.738818
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Yersinia adhesin A (YadA) is a key virulence factor of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA is a trimeric autotransporter adhesin, a class of adhesins that have been shown to enable many Gram-negative pathogens to adhere to/interact with the host extracellular matrix proteins such as collagen, vitronectin, and fibronectin. Here, we show for the first time that YadA of Yersinia enterocolitica serotype O:9 not only interacts with proteinaceous surface molecules but can also attach directly to glycan moieties. We show that YadA from Y. enterocolitica serotype O:9 does not interact with the vitronectin protein itself but exclusively with its N-linked glycans. We also show that YadA can target other glycan moieties as found in heparin, for example. So far, little is known about specific interactions between bacterial autotransporter adhesins and glycans. This could potentially lead to new antimicrobial treatment strategies, as well as diagnostic applications.
引用
收藏
页数:12
相关论文
共 48 条
  • [1] Novel Impedimetric Irnmunosensor for Detection of Pathogenic Bacteria Streptococcus pyogenes in Human Saliva
    Ahmed, Asif
    Rushworth, Jo V.
    Wright, John D.
    Millner, Paul A.
    [J]. ANALYTICAL CHEMISTRY, 2013, 85 (24) : 12118 - 12125
  • [2] Capila I., 2002, ANGEW CHEM, V114, P426, DOI DOI 10.1002/1521-3757(20020201)114:33.0.CO
  • [3] 2-Q
  • [4] Insights into the autotransport process of a trimeric autotransporter, Yersinia Adhesin A (YadA)
    Chauhan, Nandini
    Hatlem, Daniel
    Orwick-Rydmark, Marcella
    Schneider, Kenneth
    Floetenmeyer, Matthias
    van Rossum, Barth
    Leo, Jack C.
    Linke, Dirk
    [J]. MOLECULAR MICROBIOLOGY, 2019, 111 (03) : 844 - 862
  • [5] Yersinia adhesins: An arsenal for infection
    Chauhan, Nandini
    Wrobel, Agnieszka
    Skurnik, Mikael
    Leo, Jack C.
    [J]. PROTEOMICS CLINICAL APPLICATIONS, 2016, 10 (9-10) : 949 - 963
  • [6] Domenici L, 2016, EUR REV MED PHARMACO, V20, P2920
  • [7] The extracellular matrix at a glance
    Frantz, Christian
    Stewart, Kathleen M.
    Weaver, Valerie M.
    [J]. JOURNAL OF CELL SCIENCE, 2010, 123 (24) : 4195 - 4200
  • [8] Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/NMETH.1318, 10.1038/nmeth.1318]
  • [9] A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin a autotransport
    Grosskinsky, Ulrike
    Schuetz, Monika
    Fritz, Michaela
    Schmid, Yvonne
    Lamparter, Marina C.
    Szczesny, Pawel
    Lupas, Andrei N.
    Autenrieth, Ingo B.
    Linke, Dirk
    [J]. JOURNAL OF BACTERIOLOGY, 2007, 189 (24) : 9011 - 9019
  • [10] Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site
    Guan, Jian
    Bywaters, Stephanie M.
    Brendle, Sarah A.
    Ashley, Robert E.
    Makhov, Alexander M.
    Conway, James F.
    Christensen, Neil D.
    Hafenstein, Susan
    [J]. STRUCTURE, 2017, 25 (02) : 253 - 263