Close-range laser scanning in forests: towards physically based semantics across scales

被引:35
作者
Morsdorf, F. [1 ,2 ]
Kukenbrink, D. [1 ]
Schneider, F. D. [1 ,2 ]
Abegg, M. [1 ,3 ]
Schaepman, M. E. [1 ,2 ]
机构
[1] Univ Zurich, Dept Geog, Remote Sensing Labs, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Univ Zurich, URPP Global Change & Biodivers, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Snow & Landscape Res WSL, WSL Swiss Fed Inst Forest, Forest Resources & Management, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland
基金
欧盟第七框架计划;
关键词
laser scanning; ultra-light aerial vehicle; forests; radiative transfer modelling; ray tracing; leaf area index; WAVE-FORM LIDAR; LEAF-AREA INDEX; TREE MODELS; GAP FRACTION; AIRBORNE; RETRIEVAL; VOLUME; SCANS; LAI;
D O I
10.1098/rsfs.2017.0046
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.
引用
收藏
页数:10
相关论文
共 43 条
  • [1] Terrestrial Laser Scanning for Forest Inventories Tree Diameter Distribution and Scanner Location Impact on Occlusion
    Abegg, Meinrad
    Kuekenbrink, Daniel
    Zell, Juergen
    Schaepman, Michael E.
    Morsdorf, Felix
    [J]. FORESTS, 2017, 8 (06):
  • [2] Automatic tree species recognition with quantitative structure models
    Akerblom, Markku
    Raumonen, Pasi
    Makipaa, Raisa
    Kaasalainen, Mikko
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 191 : 1 - 12
  • [3] [Anonymous], 2014, FORESTRY APPL AIRBOR
  • [4] Direct retrieval of canopy gap probability using airborne waveform lidar
    Armston, John
    Disney, Mathias
    Lewis, Philip
    Scarth, Peter
    Phinn, Stuart
    Lucas, Richard
    Bunting, Peter
    Goodwin, Nicholas
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 134 : 24 - 38
  • [5] Quantifying the biodiversity value of tropical primary, secondary, and plantation forests
    Barlow, J.
    Gardner, T. A.
    Araujo, I. S.
    Avila-Pires, T. C.
    Bonaldo, A. B.
    Costa, J. E.
    Esposito, M. C.
    Ferreira, L. V.
    Hawes, J.
    Hernandez, M. M.
    Hoogmoed, M. S.
    Leite, R. N.
    Lo-Man-Hung, N. F.
    Malcolm, J. R.
    Martins, M. B.
    Mestre, L. A. M.
    Miranda-Santos, R.
    Nunes-Gutjahr, A. L.
    Overal, W. L.
    Parry, L.
    Peters, S. L.
    Ribeiro-Junior, M. A.
    da Silva, M. N. F.
    Motta, C. da Silva
    Peres, C. A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18555 - 18560
  • [6] On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR
    Beland, Martin
    Baldocchi, Dennis D.
    Widlowski, Jean-Luc
    Fournier, Richard A.
    Verstraete, Michel M.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 184 : 82 - 97
  • [7] Bienert A, 2010, INT ARCH PHOTOGRAMM, V38, P92
  • [8] Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification
    Bruggisser, Moritz
    Roncat, Andreas
    Schaepman, Michael E.
    Morsdorf, Felix
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 196 : 28 - 41
  • [9] Improved allometric models to estimate the aboveground biomass of tropical trees
    Chave, Jerome
    Rejou-Mechain, Maxime
    Burquez, Alberto
    Chidumayo, Emmanuel
    Colgan, Matthew S.
    Delitti, Welington B. C.
    Duque, Alvaro
    Eid, Tron
    Fearnside, Philip M.
    Goodman, Rosa C.
    Henry, Matieu
    Martinez-Yrizar, Angelina
    Mugasha, Wilson A.
    Muller-Landau, Helene C.
    Mencuccini, Maurizio
    Nelson, Bruce W.
    Ngomanda, Alfred
    Nogueira, Euler M.
    Ortiz-Malavassi, Edgar
    Pelissier, Raphael
    Ploton, Pierre
    Ryan, Casey M.
    Saldarriaga, Juan G.
    Vieilledent, Ghislain
    [J]. GLOBAL CHANGE BIOLOGY, 2014, 20 (10) : 3177 - 3190
  • [10] Forest canopy gap fraction from terrestrial laser scanning
    Danson, F. Mark
    Hetherington, David
    Morsdorf, Felix
    Koetz, Benjamin
    Allgoewer, Britta
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (01) : 157 - 160