14-3-3 proteins: regulation of signal-induced events

被引:68
作者
Ferl, RJ [1 ]
机构
[1] Univ Florida, Dept Hort Sci, Program Plant Mol & Cellular Biol, Gainesville, FL 32601 USA
关键词
D O I
10.1111/j.0031-9317.2004.0239.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The field of signal transduction has experienced a significant paradigm shift as a result of an increased understanding of the roles of 14-3-3 proteins. There are many cases where signal-induced phosphorylation itself may cause a change in protein function. This simple modification is, in fact, the primary basis of signal transduction events in many systems. There are a large and growing number of cases, however, where simple phosphorylation is not enough to effect a change in protein function. In these cases, the 14-3-3 proteins can be required to complete the change in function. Therefore signal transduction can be either the relatively simple process where phosphorylation alters target activity, or it can be a more complex, multistep process with the 14-3-3 proteins playing the major role of bringing the signal transduction event to completion. This makes 14-3-3-modulated signal transduction a more complicated process with additional avenues for regulation and variety. Adding further complexity to the process is the fact that 14-3-3 proteins are present as multigene families in most organisms (Aitken et al. Trends Biochem Sci 17: 498-501, 1992; Ferl Annu Rev Plant Physiol Plant Molecular Biology 47: 49-73, 1996), with each member of the family being differentially expressed in various tissues and with potentially differential affinity for various target proteins. This review focuses on the 14-3-3 family of Arabidopsis as a model for further developing understanding of the roles of the 14-3-3 proteins as modulators of signal transduction events in plants. The primary approaches to these questions are not unlike the approaches that would be used in the functional dissection of any multigene family, but the interpretation of these data will have wide implications since the 14-3-3 s physically interact with other protein families.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 57 条
[1]   From cytosol to organelles: 14-3-3 proteins as multifunctional regulators of plant cell [J].
Aducci, P ;
Camoni, L ;
Marra, M ;
Visconti, S .
IUBMB LIFE, 2002, 53 (01) :49-55
[2]   14-3-3 PROTEINS ON THE MAP [J].
AITKEN, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :95-97
[3]  
AITKEN DW, 1992, NUCLEUS-CAMBRIDGE, V14, P3
[4]   CDNA CLONING AND CHARACTERIZATION OF MITOCHONDRIAL IMPORT STIMULATION FACTOR (MSF) PURIFIED FROM RAT-LIVER CYTOSOL [J].
ALAM, R ;
HACHIYA, N ;
SAKAGUCHI, M ;
KAWABATA, S ;
IWANAGA, S ;
KITAJIMA, M ;
MIHARA, K ;
OMURA, T .
JOURNAL OF BIOCHEMISTRY, 1994, 116 (02) :416-425
[5]   Phosphorylated nitrate reductase and 14-3-3 proteins - Site of interaction, effects of ions, and evidence for an AMP-binding site on 14-3-3 proteins [J].
Athwal, GS ;
Huber, JL ;
Huber, SC .
PLANT PHYSIOLOGY, 1998, 118 (03) :1041-1048
[6]   Biological significance of divalent metal ion binding to 14-3-3 proteins in relationship to nitrate reductase inactivation [J].
Athwal, GS ;
Huber, JL ;
Huber, SC .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (10) :1065-1072
[7]   Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase [J].
Athwal, GS ;
Huber, SC .
PLANT JOURNAL, 2002, 29 (02) :119-129
[8]   14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases [J].
Bachmann, M ;
Huber, JL ;
Athwal, GS ;
Wu, K ;
Ferl, RJ ;
Huber, SC .
FEBS LETTERS, 1996, 398 (01) :26-30
[9]   14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase [J].
Bunney, TD ;
van Walraven, HS ;
de Boer, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :4249-4254
[10]   Phosphorylation-dependent interaction between plant plasma membrane H+-ATPase and 14-3-3 proteins [J].
Camoni, L ;
Iori, V ;
Marra, M ;
Aducci, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) :9919-9923