Perturbations of eigenvalues embedded at threshold: Two-dimensional solvable models

被引:4
作者
Cacciapuoti, Claudio [1 ]
Carlone, Raffaele [2 ]
Figari, Rodolfo [3 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, Inst Angew Math, D-53115 Bonn, Germany
[2] Univ Insubria, Dipartimento Fis & Matemat, I-22100 Como, Italy
[3] Univ Naples Federico 2, Ist Nazl Fis Nucl, Sez Napoli, Dipartimento Sci Fis, I-80126 Naples, Italy
关键词
COUPLING-CONSTANT THRESHOLDS; SCHRODINGER-OPERATORS; EXPONENTIAL DECAY; UNIFIED APPROACH; RESONANCE THEORY; DIMENSIONS; STATES;
D O I
10.1063/1.3627566
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a family of Hamiltonians describing a quantum particle interacting, via zero-range forces, with a localized spin in the plane. A sub-class of Hamiltonians shows eigenvalues and/or resonances at the threshold of the continuous spectrum and generates particle dynamics not affecting the localized spin. We examine the effect of a small particle-spin interaction on the spectral structure of such unperturbed Hamiltonians. (C) 2011 American Institute of Physics. [doi:10.1063/1.3627566]
引用
收藏
页数:12
相关论文
共 25 条
[1]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
[2]  
[Anonymous], 1992, HDB IMPEDANCE FUNCTI
[3]   Interchannel resonances at a threshold [J].
Baumgartner, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) :5928-5938
[4]  
BOLLE D, 1992, SCHRODINGER OPERATOR, P173
[5]   Resonances in models of spin-dependent point interactions [J].
Cacciapuoti, C. ;
Carlone, R. ;
Figari, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (03)
[6]  
CACCIAPUOTI C, 2010, ARXIV10061372MATHPH
[7]   Spin-dependent point potentials in one and three dimensions [J].
Cacciapuoti, Claudio ;
Carlone, Raffaele ;
Figari, Rodolfo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) :249-261
[8]   Perturbations of eigenvalues embedded at threshold: I. One- and three-dimensional solvable models [J].
Cacciapuoti, Claudio ;
Carlone, Raffaele ;
Figari, Rodolfo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (47)
[9]   Resonance theory for Schrodinger operators [J].
Costin, O ;
Soffer, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :133-152
[10]   Nonexponential decay laws in perturbation theory of near threshold eigenvalues [J].
Dinu, Victor ;
Jensen, Arne ;
Nenciu, Gheorghe .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)