Energy norm a posteriori error estimates for discontinuous Galerkin approximations of the linear elasticity problem

被引:11
作者
Hansbo, Peter [1 ,2 ]
Larson, Mats G. [3 ]
机构
[1] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
关键词
Discontinuous Galerkin; Adaptivity; A posteriori error estimate; Elasticity; FINITE-ELEMENT METHODS; FEM;
D O I
10.1016/j.cma.2011.06.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a residual-based a posteriori error estimate in an energy norm of the error in a family of discontinuous Galerkin approximations of linear elasticity problems. The theory is developed in two and three spatial dimensions and general nonconvex polygonal domains are allowed. We also present some illustrating numerical examples. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3026 / 3030
页数:5
相关论文
共 12 条
[1]   Energy norm a posteriori error estimation for discontinuous Galerkin methods [J].
Becker, R ;
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) :723-733
[2]  
Brenner S. C., 2007, MATH THEORY FINITE E
[3]   A unifying theory of a posteriori error control for nonconforming finite element methods [J].
Carstensen, C. ;
Hu, Jun .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :473-502
[4]   Locking-free adaptive mixed finite element methods in linear elasticity [J].
Carstensen, C ;
Dolzmann, G ;
Funken, SA ;
Helm, DS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) :1701-1718
[5]  
Carstensen C., 2005, NUMER MATH, V100, P617
[6]  
da Veiga LB, 2007, NUMER MATH, V106, P165, DOI [10.1007/s00211-007-0066-1, 10.1007/s00211-007-0066-11]
[7]   Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity [J].
Hansbo, P ;
Larson, MG .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :63-72
[8]   Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method [J].
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (17-18) :1895-1908
[9]   An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity [J].
Houston, Paul ;
Schotzau, Dominik ;
Wihler, Thomas P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3224-3246
[10]   A posteriori error estimates for mixed finite element approximations of elliptic problems [J].
Larson, Mats G. ;
Malqvist, Axel .
NUMERISCHE MATHEMATIK, 2008, 108 (03) :487-500