ART-KOHONEN neural network for fault diagnosis of rotating machinery

被引:145
|
作者
Yang, BS [1 ]
Han, T [1 ]
An, JL [1 ]
机构
[1] Pukyong Natl Univ, Sch Mech Engn, Pusan 608739, South Korea
关键词
artificial neural network; fault diagnosis; rotating machinery; vibration signal; feature extraction;
D O I
10.1016/S0888-3270(03)00073-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN), is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for learning. However, the 'off-line' NNs are unable to adapt autonomously and must be retrained by applying the complete dataset including the new data. The ART networks can solve the plasticity-stability dilemma. In other words, they are able to carry out 'on-line' training without forgetting previously trained patterns (stable training); it can recode previously trained categories adaptive to changes in the environment and is self-organising. ART-KNN also holds these characteristics, and more suitable than original ART for fault diagnosis of machinery. In order to test the proposed network, the vibration signal is selected as raw inputs due to its simplicity, accuracy and efficiency. The results of the experiments confirm the performance of the proposed network through comparing with other NNs, such as the self-organising feature maps (SOFMs), learning vector quantisation (LVQ) and radial basis function (RBF) NNs under the same conditions. The diagnosis success rate for the ART-Kohonen network was 100%, while the rates of SOFM, LVQ and RBF networks were 93%, 93% and 89%, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 50 条
  • [41] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Binsen Peng
    Hong Xia
    Xinzhi Lv
    M. Annor-Nyarko
    Shaomin Zhu
    Yongkuo Liu
    Jiyu Zhang
    Applied Intelligence, 2022, 52 : 3051 - 3065
  • [42] Convolutional Neural Network-Based Bayesian Gaussian Mixture for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Chen, Zuoyi
    Shao, Xinyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [43] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [44] Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network
    Mitoma, Tetsuro
    Wang, Huaqing
    Chen, Peng
    COMPUTERS & INDUSTRIAL ENGINEERING, 2008, 55 (04) : 783 - 794
  • [45] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [46] Multibranch and Multiscale Dynamic Convolutional Network for Small Sample Fault Diagnosis of Rotating Machinery
    Liang, Haopeng
    Cao, Jie
    Zhao, Xiaoqiang
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8973 - 8988
  • [47] Rotating Machinery Fault Diagnosis Based on EEMD Time-Frequency Energy and SOM Neural Network
    Hao Wang
    Jinji Gao
    Zhinong Jiang
    Junjie Zhang
    Arabian Journal for Science and Engineering, 2014, 39 : 5207 - 5217
  • [48] A Fault Diagnosis of Rotating Machinery Based on a Mutual Dimensionless Index and a Convolution Neural Network
    Su, Naiquan
    Zhang, Qinghua
    Zhou, Lingmeng
    Chang, Xiaoxiao
    Xu, Ting
    IEEE INTELLIGENT SYSTEMS, 2023, 38 (04) : 33 - 41
  • [49] Transfer Relation Network for Fault Diagnosis of Rotating Machinery With Small Data
    Lu, Na
    Hu, Huiyang
    Yin, Tao
    Lei, Yaguo
    Wang, Shuhui
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 11927 - 11941
  • [50] Research on sparsity indexes for fault diagnosis of rotating machinery
    Miao, Yonghao
    Zhao, Ming
    Hua, Jiadong
    MEASUREMENT, 2020, 158 (158)