ART-KOHONEN neural network for fault diagnosis of rotating machinery

被引:145
|
作者
Yang, BS [1 ]
Han, T [1 ]
An, JL [1 ]
机构
[1] Pukyong Natl Univ, Sch Mech Engn, Pusan 608739, South Korea
关键词
artificial neural network; fault diagnosis; rotating machinery; vibration signal; feature extraction;
D O I
10.1016/S0888-3270(03)00073-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN), is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for learning. However, the 'off-line' NNs are unable to adapt autonomously and must be retrained by applying the complete dataset including the new data. The ART networks can solve the plasticity-stability dilemma. In other words, they are able to carry out 'on-line' training without forgetting previously trained patterns (stable training); it can recode previously trained categories adaptive to changes in the environment and is self-organising. ART-KNN also holds these characteristics, and more suitable than original ART for fault diagnosis of machinery. In order to test the proposed network, the vibration signal is selected as raw inputs due to its simplicity, accuracy and efficiency. The results of the experiments confirm the performance of the proposed network through comparing with other NNs, such as the self-organising feature maps (SOFMs), learning vector quantisation (LVQ) and radial basis function (RBF) NNs under the same conditions. The diagnosis success rate for the ART-Kohonen network was 100%, while the rates of SOFM, LVQ and RBF networks were 93%, 93% and 89%, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 50 条
  • [31] A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network
    Yang, Yuantao
    Zheng, Huailiang
    Li, Yongbo
    Xu, Minqiang
    Chen, Yushu
    ISA TRANSACTIONS, 2019, 91 : 235 - 252
  • [32] A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
    Guo, Sheng
    Yang, Tao
    Gao, Wei
    Zhang, Chen
    SENSORS, 2018, 18 (05)
  • [33] Fault Diagnosis of Rotating Machinery Based on 1D-2D Joint Convolution Neural Network
    Du, Wenliao
    Hu, Pengjie
    Wang, Hongchao
    Gong, Xiaoyun
    Wang, Shuangyuan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (05) : 5277 - 5285
  • [34] Rotating machinery fault diagnosis based on improved wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON QUALITY & RELIABILITY, 2005, : 781 - 786
  • [35] Graph neural network architecture search for rotating machinery fault diagnosis based on reinforcement learning
    Li, Jialin
    Cao, Xuan
    Chen, Renxiang
    Zhang, Xia
    Huang, Xianzhen
    Qu, Yongzhi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 202
  • [36] Intelligent Fault Diagnosis of Rotating Machinery Based on Deep Recurrent Neural Network
    Li, Xingqiu
    Jiang, Hongkai
    Hu, Yanan
    Xiong, Xiong
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 67 - 72
  • [37] Exploiting graph neural network with one-shot learning for fault diagnosis of rotating machinery
    Yang, Shuai
    Chen, Xu
    Wang, Yu
    Bai, Yun
    Pu, Ziqiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5279 - 5290
  • [38] Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
    Wu, Chunzhi
    Jiang, Pengcheng
    Ding, Chuang
    Feng, Fuzhou
    Chen, Tang
    COMPUTERS IN INDUSTRY, 2019, 108 : 53 - 61
  • [39] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [40] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217