Security against eavesdropping in quantum cryptography

被引:94
作者
Lutkenhaus, N
机构
[1] Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 0NG, John Anderson Building
关键词
D O I
10.1103/PhysRevA.54.97
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A sharp estimate is given for the amount of Shannon information and expected collision probability. This estimate is valid for all eavesdropping strategies described by a generalized measurement and restricted to the Hilbert space of the one-photon state. The optimal generalized measurement is explicitly given.
引用
收藏
页码:97 / 111
页数:15
相关论文
共 27 条
  • [1] INFORMATION-THEORETIC LIMITS TO QUANTUM CRYPTOGRAPHY
    BARNETT, SM
    PHOENIX, SJD
    [J]. PHYSICAL REVIEW A, 1993, 48 (01): : R5 - R8
  • [2] Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
  • [3] Generalized privacy amplification
    Bennett, CH
    Brassard, G
    Crepeau, C
    Maurer, UM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1915 - 1923
  • [4] PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION
    BENNETT, CH
    BRASSARD, G
    ROBERT, JM
    [J]. SIAM JOURNAL ON COMPUTING, 1988, 17 (02) : 210 - 229
  • [5] QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES
    BENNETT, CH
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3121 - 3124
  • [6] BENNETT CH, 1984, DEC IEEE INT C COMP, P175
  • [7] ON A FUNDAMENTAL THEOREM OF QUANTUM CRYPTOGRAPHY
    BLOW, KJ
    PHOENIX, SJD
    [J]. JOURNAL OF MODERN OPTICS, 1993, 40 (01) : 33 - 36
  • [8] Davies E. B., 1976, Quantum theory of open systems
  • [9] INFORMATION AND QUANTUM MEASUREMENT
    DAVIES, EB
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) : 596 - 599
  • [10] EAVESDROPPING ON QUANTUM-CRYPTOGRAPHICAL SYSTEMS
    EKERT, AK
    HUTTNER, B
    PALMA, GM
    PERES, A
    [J]. PHYSICAL REVIEW A, 1994, 50 (02): : 1047 - 1056