Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip

被引:23
作者
Chen, A. [1 ]
Eberle, M. M. [1 ]
Lunt, E. J. [2 ]
Liu, S. [1 ]
Leake, K. [1 ]
Rudenko, M. I. [1 ]
Hawkins, A. R. [2 ]
Schmidt, H. [1 ]
机构
[1] Univ Calif Santa Cruz, Sch Engn, Santa Cruz, CA 95064 USA
[2] Brigham Young Univ, ECE Dept, Provo, UT 84602 USA
关键词
WAVE-GUIDES; PARTICLE; MANIPULATION;
D O I
10.1039/c0lc00401d
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence cross-correlation spectroscopy (FCCS) is a highly sensitive fluorescence technique with distinct advantages in many bioanalytical applications involving interaction and binding of multiple components. Due to the use of multiple beams, bulk optical FCCS setups require delicate and complex alignment procedures. We demonstrate the first implementation of dual-color FCCS on a planar, integrated optofluidic chip based on liquid-core waveguides that can guide liquid and light simultaneously. In this configuration, the excitation beams are delivered in predefined locations and automatically aligned within the excitation waveguides. We implement two canonical applications of FCCS in the optofluidic lab-on-chip environment: particle colocalization and binding/dissociation dynamics. Colocalization is demonstrated in the detection and discrimination of single-color and double-color fluorescently labeled nanobeads. FCCS in combination with fluorescence resonance energy transfer (FRET) is used to detect the denaturation process of double-stranded DNA at nanomolar concentration.
引用
收藏
页码:1502 / 1506
页数:5
相关论文
共 25 条
[1]   Fluorescence cross-correlation spectroscopy in living cells [J].
Bacia, K ;
Kim, SA ;
Schwille, P .
NATURE METHODS, 2006, 3 (02) :83-89
[2]   Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo [J].
Baudendistel, N ;
Müller, G ;
Waldeck, W ;
Angel, P ;
Langowski, J .
CHEMPHYSCHEM, 2005, 6 (05) :984-990
[3]   ANTIRESONANT REFLECTING OPTICAL WAVE-GUIDES IN SIO2-SI MULTILAYER STRUCTURES [J].
DUGUAY, MA ;
KOKUBUN, Y ;
KOCH, TL ;
PFEIFFER, L .
APPLIED PHYSICS LETTERS, 1986, 49 (01) :13-15
[4]   DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels [J].
Foquet, M ;
Korlach, J ;
Zipfel, W ;
Webb, WW ;
Craighead, HG .
ANALYTICAL CHEMISTRY, 2002, 74 (06) :1415-1422
[5]   Optofluidic waveguides: II. Fabrication and structures [J].
Hawkins, Aaron R. ;
Schmidt, Holger .
MICROFLUIDICS AND NANOFLUIDICS, 2008, 4 (1-2) :17-32
[6]   Nuclear Import and Assembly of Influenza A Virus RNA Polymerase Studied in Live Cells by Fluorescence Cross-Correlation Spectroscopy [J].
Huet, Sebastien ;
Avilov, Sergiy V. ;
Ferbitz, Lars ;
Daigle, Nathalie ;
Cusack, Stephen ;
Ellenberg, Jan .
JOURNAL OF VIROLOGY, 2010, 84 (03) :1254-1264
[7]   Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy [J].
Kettling, U ;
Koltermann, A ;
Schwille, P ;
Eigen, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1416-1420
[8]   Intracellular calmodulin availability accessed with two-photon cross-correlation [J].
Kim, SA ;
Heinze, KG ;
Waxham, MN ;
Schwille, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :105-110
[9]   Fluorescence correlation spectroscopy: the technique and its applications [J].
Krichevsky, O ;
Bonnet, G .
REPORTS ON PROGRESS IN PHYSICS, 2002, 65 (02) :251-297
[10]  
Lakowicz J.R., 2006, PRINCIPLES FLUORESCE, DOI DOI 10.1007/978-0-387-46312-4