Personalized Medicine: The Road Ahead

被引:32
作者
Mehta, Rutika [1 ]
Jain, Rohit K. [1 ]
Badve, Sunil [1 ]
机构
[1] Indiana Univ Sch Med, Dept Pathol, Indianapolis, IN 46202 USA
关键词
Future directions; Prognostic factors; PATHOLOGICAL PROGNOSTIC-FACTORS; BREAST-CANCER PATIENTS; GROWTH-FACTOR RECEPTOR; GENE-EXPRESSION; ESTROGEN-RECEPTOR; HISTOLOGIC GRADE; MOLECULAR CLASSIFICATION; MONOCLONAL-ANTIBODY; FOLLOW-UP; ADJUVANT;
D O I
10.3816/CBC.2011.n.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
With breast cancer now being recognized as a heterogeneous disease, the concept of personalized medicine demands that the tumor of every individual be treated uniquely. This has lead to ever-expanding use of existing prognostic and predictive markers, and the search for better ones is ongoing. The classic prognostic tools such as tumor size, lymph node status, grade, hormone receptors, and HER2 status are now supplemented by gene expression based tools such as PAM50 and MammaPrint. However, the overdependence of these tools on proliferation-related genes is a significant handicap. Although pathway-based signatures hold great promise in future breast cancer prognostication, the fact that every tumor has multiple functional pathways significantly limits the utility of this approach. Developed by the integration of estrogen receptor (ER), HER2, proliferation-related, and other genes, the Oncotype DX assay has been able to provide valuable prognostic information for ER-positive tumors. Newer molecular markers based on cancer stem cells, single-nucleotide polymorphisms (SNPs), and miRNAs are becoming available, but their importance needs to be validated. It is clear that breast cancer is a multifaceted process and that none of the tools can reliably predict a binary outcome (recurrence or no recurrence). The breast cancer community is still awaiting an ideal prognostic tool that can integrate knowledge from classic variables such as tumor size and grade with new throughput technology and principles of pharmacogenomics. Such a tool will not only define prognostic subgroups but also be able to predict therapeutic efficacy and/or resistance based on molecular profiling.
引用
收藏
页码:20 / 26
页数:7
相关论文
共 93 条
[1]   The rapamycin-regulated gene expression signature determines prognosis for breast cancer [J].
Akcakanat, Argun ;
Zhang, Li ;
Tsavachidis, Spiridon ;
Meric-Bernstam, Funda .
MOLECULAR CANCER, 2009, 8 :75
[2]   Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial [J].
Albain, Kathy S. ;
Barlow, William E. ;
Shak, Steven ;
Hortobagyi, Gabriel N. ;
Livingston, Robert B. ;
Yeh, I-Tien ;
Ravdin, Peter ;
Bugarini, Roberto ;
Boehner, Frederick L. ;
Davidson, Nancy E. ;
Sledge, George W. ;
Winer, Eric P. ;
Hudis, Clifford ;
Ingle, James N. ;
Perez, Edith A. ;
Pritchard, Kathleen I. ;
Shepherd, Lois ;
Gralow, Julie R. ;
Yoshizawa, Carl ;
Allred, D. Craig ;
Osborne, C. Kent ;
Hayes, Daniel F. .
LANCET ONCOLOGY, 2010, 11 (01) :55-65
[3]  
Ambrosone CB, 2001, CANCER RES, V61, P7130
[4]   Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER) [J].
不详 .
LANCET ONCOLOGY, 2007, 8 (12) :1079-1087
[5]   Estrogen- and progesterone-receptor status in ECOG 2197: Comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory [J].
Badve, Sunil S. ;
Baehner, Frederick L. ;
Gray, Robert P. ;
Childs, Barrett H. ;
Maddala, Tara ;
Liu, Mei-Lan ;
Rowley, Steve C. ;
Shak, Steven ;
Perez, Edith D. ;
Shulman, Lawrence J. ;
Martino, Silvana ;
Davidson, Nancy E. ;
Sledge, George W. ;
Goldstein, Lori J. ;
Sparano, Joseph A. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (15) :2473-2481
[6]  
Beatson GT., 1896, LANCET, V148, P104
[7]   MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype [J].
Blenkiron, Cherie ;
Goldstein, Leonard D. ;
Thorne, Natalie P. ;
Spiteri, Inmaculada ;
Chin, Suet-Feung ;
Dunning, Mark J. ;
Barbosa-Morais, Nuno L. ;
Teschendorff, Andrew E. ;
Green, Andrew R. ;
Ellis, Ian O. ;
Tavare, Simon ;
Caldas, Carlos ;
Miska, Eric A. .
GENOME BIOLOGY, 2007, 8 (10)
[8]   HISTOLOGICAL GRADING AND PROGNOSIS IN BREAST CANCER - A STUDY OF 1409 CASES OF WHICH 359 HAVE BEEN FOLLOWED FOR 15 YEARS [J].
BLOOM, HJG ;
RICHARDSON, WW .
BRITISH JOURNAL OF CANCER, 1957, 11 (03) :359-&
[9]   Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism:: Implication for optimization of breast cancer treatment [J].
Borges, Silvana ;
Desta, Zeruesenay ;
Li, Lang ;
Skaar, Todd C. ;
Ward, Bryan A. ;
Nguyen, Anne ;
Jin, Yan ;
Storniolo, Anna Maria ;
Nikoloff, D. Michele ;
Wu, Lin ;
Hillman, Grant ;
Hayes, Daniel F. ;
Stearns, Vered ;
Flockhart, David A. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2006, 80 (01) :61-74
[10]   Validation of 70-gene prognosis signature in node-negative breast cancer [J].
Bueno-de-Mesquita, J. M. ;
Linn, S. C. ;
Keijzer, R. ;
Wesseling, J. ;
Nuyten, D. S. A. ;
van Krimpen, C. ;
Meijers, C. ;
de Graaf, P. W. ;
Bos, M. M. E. M. ;
Hart, A. A. M. ;
Rutgers, E. J. T. ;
Peterse, J. L. ;
Halfwerk, H. ;
de Groot, R. ;
Pronk, A. ;
Floore, A. N. ;
Glas, A. M. ;
van't Veer, L. J. ;
van de Vijver, M. J. .
BREAST CANCER RESEARCH AND TREATMENT, 2009, 117 (03) :483-495