Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data

被引:7
作者
Shan, Xu [1 ]
Chen, Jinyu [2 ]
Dong, Kangning [3 ]
Zhou, Wei [1 ]
Zhang, Shihua [3 ,4 ,5 ,6 ,7 ]
机构
[1] Yunnan Univ, Department Software Engn, Kunming, Peoples R China
[2] Beijing Univ Technol, Fac Sci, College Stat & Data Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, CEMS, RCSDS,NCMIS, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, School Math Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Center Excellence Anim Evolut & Genet, Kunming, Peoples R China
[6] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Chinese Acad Sci, Key Lab Syst Biol, Hangzhou, Peoples R China
[7] Chinese Acad Sci, Acad Math & Syst Sci, CEMS, RCSDS,NCMIS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
data integration; single-cell transcriptomics; spatial modular patterns; spatial transcriptomics; GENE-EXPRESSION; EXTRACELLULAR-MATRIX; SEQ; ARCHITECTURE; NETWORK;
D O I
10.1089/cmb.2021.0617
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to analyze the expression level of tissues at a cellular resolution. However, it could not capture the spatial organization of cells in a tissue. The spatially resolved transcriptomics technologies (ST) have been developed to address this issue. However, the emerging STs are still inefficient at single-cell resolution and/or fail to capture the sufficient reads. To this end, we adopted a partial least squares-based method (spatial modular patterns [SpaMOD]) to simultaneously integrate the two data modalities, as well as the networks related to cells and spots, to identify the cell-spot comodules for deciphering the SpaMOD of tissues. We applied SpaMOD to three paired scRNA-seq and ST datasets, derived from the mouse brain, granuloma, and pancreatic ductal adenocarcinoma, respectively. The identified cell-spot comodules provide detailed biological insights into the spatial relationships between cell populations and their spatial locations in the tissue.
引用
收藏
页码:650 / 663
页数:14
相关论文
共 39 条
[1]  
Andersson A., 2019, BIORXIV, DOI [10.1101/2019.1112.1113.874495, DOI 10.1101/2019.1112.1113.874495]
[2]  
Antonucci Flavia, 2016, Front Synaptic Neurosci, V8, P7, DOI 10.3389/fnsyn.2016.00007
[3]   Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity [J].
Berglund, Emelie ;
Maaskola, Jonas ;
Schultz, Niklas ;
Friedrich, Stefanie ;
Marklund, Maja ;
Bergenstrahle, Joseph ;
Tarish, Firas ;
Tanoglidi, Anna ;
Vickovic, Sanja ;
Larsson, Ludvig ;
Salmen, Fredrik ;
Ogris, Christoph ;
Wallenborg, Karolina ;
Lagergren, Jens ;
Stahl, Patrik ;
Sonnhammer, Erik ;
Helleday, Thomas ;
Lundeberg, Joakim .
NATURE COMMUNICATIONS, 2018, 9
[4]   Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram [J].
Biancalani, Tommaso ;
Scalia, Gabriele ;
Buffoni, Lorenzo ;
Avasthi, Raghav ;
Lu, Ziqing ;
Sanger, Aman ;
Tokcan, Neriman ;
Vanderburg, Charles R. ;
Segerstolpe, Asa ;
Zhang, Meng ;
Avraham-Davidi, Inbal ;
Vickovic, Sanja ;
Nitzan, Mor ;
Ma, Sai ;
Subramanian, Ayshwarya ;
Lipinski, Michal ;
Buenrostro, Jason ;
Brown, Nik Bear ;
Fanelli, Duccio ;
Zhuang, Xiaowei ;
Macosko, Evan Z. ;
Regev, Aviv .
NATURE METHODS, 2021, 18 (11) :1352-+
[5]  
BRAAK H, 1986, PROG BRAIN RES, V70, P185
[6]   Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data [J].
Chen, Jinyu ;
Zhang, Shihua .
BIOINFORMATICS, 2016, 32 (11) :1724-1732
[7]   Fibroblasts and myofibroblasts in wound healing [J].
Darby, Ian A. ;
Laverdet, Betty ;
Bonte, Frederic ;
Desmouliere, Alexis .
CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2014, 7 :301-311
[8]  
DONG K, 2021, BRIEF BIOINFORM, V22
[9]   Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder [J].
Dong, Kangning ;
Zhang, Shihua .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   Network diffusion for scalable embedding of massive single-cell ATAC-seq data [J].
Dong, Kangning ;
Zhang, Shihua .
SCIENCE BULLETIN, 2021, 66 (22) :2271-2276