Molecular subtype classification of breast cancer using established radiomic signature models based on 18F-FDG PET/CT images

被引:17
作者
Liu, Jianjing [1 ]
Bian, Haiman [2 ]
Zhang, Yufan [1 ,3 ]
Gao, Yongchang [4 ]
Yin, Guotao [1 ]
Wang, Ziyang [1 ]
Li, Xiaofeng [1 ]
Ma, Wenjuan [5 ]
Xu, Wengui [1 ]
机构
[1] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Mol Imaging & Nucl Med,Key Lab Canc Prevent, Tianjin 300060, Peoples R China
[2] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Radiol,Key Lab Canc Prevent & Therapy, Tianjin 300060, Peoples R China
[3] Army Med Univ, Southwest Hosp, Dept Nucl Med, Affiliated Hosp 1, Chongqing 400038, Peoples R China
[4] Tianjin Med Univ Gen Hosp, Dept Gen Surg, Tianjin 300060, Peoples R China
[5] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Breast Imaging,Key Lab Canc Prevent & Therap, Tianjin 300060, Peoples R China
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2021年 / 26卷 / 09期
基金
中国国家自然科学基金;
关键词
HETEROGENEITY; FEATURES; ASSOCIATION;
D O I
10.52586/4960
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Backgrounds: To evaluate the predictive power of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography (F-18-FDG PET/CT) derived radiomics in molecular subtype classification of breast cancer (BC). Methods: A total of 273 primary BC patients who underwent a F-18-FDG PET/CT imaging prior to any treatment were included in this retrospective study, and the values of five conventional PET parameters were calculated, including the maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The ImageJ 1.50i software and METLAB package were used to delineate the contour of BC lesions and extract PET/CT derived radiomic features reflecting heterogeneity. Then, the least absolute shrinkage and selection operator (LASSO) algorithm was used to select optimal subsets of radiomic features and es-tablish several corresponding radiomic signature models. The predictive powers of individual PET parameters and developed PET/CT derived radiomic signature models in molecular subtype classification of BC were evaluated by using receiver operating curves (ROCs) analyses with areas under the curve (AUCs) as the main outcomes. Results: All of the three SUV parameters but not MTV nor TLG were found to be significantly underrepresented in luminal and non-triple (TN) subgroups in comparison with correspond-ing non-luminal and TN subgroups. Whereas, no signif-icant differences existed in all the five conventional PET parameters between human epidermal growth factor recep-tor 2+ (HER2+) and HER2- subgroups. Furthermore, all of the developed radiomic signature models correspondingly exhibited much more better performances than all the in-dividual PET parameters in molecular subtype classifica-tion of BC, including luminal vs. non-luminal, HER2+ vs. HER2-, and TN vs. non-TN classification, with a mean value of 0.856, 0.818, and 0.888 for AUC. Conclusions: PET/CT derived radiomic signature models outperformed individual significant PET parameters in molecular subtype classification of BC.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 30 条
[1]   Immunohistochemistry and alternative FISH testing in breast cancer with HER2 equivocal amplification [J].
Agersborg, Sally ;
Mixon, Christopher ;
Thanh Nguyen ;
Aithal, Sramila ;
Sudarsanam, Sucha ;
Blocker, Forrest ;
Weiss, Lawrence ;
Gasparini, Robert ;
Jiang, Shiping ;
Chen, Wayne ;
Hess, Gregory ;
Albitar, Maher .
BREAST CANCER RESEARCH AND TREATMENT, 2018, 170 (02) :321-328
[2]   [18F] FDG PET/CT features for the molecular characterization of primary breast tumors [J].
Antunovic, Lidija ;
Gallivanone, Francesca ;
Sollini, Martina ;
Sagona, Andrea ;
Invento, Alessandra ;
Manfrinato, Giulia ;
Kirienko, Margarita ;
Tinterri, Corrado ;
Chiti, Arturo ;
Castiglioni, Isabella .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (12) :1945-1954
[3]   Addition of HER2 and CD44 to 18F-FDG PET-based clinico-radiomic models enhances prediction of neoadjuvant chemoradiotherapy response in esophageal cancer [J].
Beukinga, Roelof J. ;
Wang, Da ;
Karrenbeld, Arend ;
Dijksterhuis, Willemieke P. M. ;
Faber, Hette ;
Burgerhof, Johannes G. M. ;
Mul, Veronique E. M. ;
Slart, Riemer H. J. A. ;
Coppes, Robert P. ;
Plukker, John Th. M. .
EUROPEAN RADIOLOGY, 2021, 31 (05) :3306-3314
[4]   Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI [J].
Chang, Ruey-Feng ;
Chen, Hong-Hao ;
Chang, Yeun-Chung ;
Huang, Chiun-Sheng ;
Chen, Jeon-Hor ;
Lo, Chung-Ming .
MAGNETIC RESONANCE IMAGING, 2016, 34 (06) :809-819
[5]   Molecular subtypes and imaging phenotypes of breast cancer [J].
Cho, Nariya .
ULTRASONOGRAPHY, 2016, 35 (04) :281-288
[6]   Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): state of art and future perspectives [J].
Fionda, Bruno ;
Boldrini, Luca ;
D'Aviero, Andrea ;
Lancellotta, Valentina ;
Gambacorta, Maria Antonietta ;
Kovacs, Gyorgy ;
Patarnello, Stefano ;
Valentini, Vincenzo ;
Tagliaferri, Luca .
JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2020, 12 (05) :497-500
[7]   High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer [J].
Grosselin, Kevin ;
Durand, Adeline ;
Marsolier, Justine ;
Poitou, Adeline ;
Marangoni, Elisabetta ;
Nemati, Fariba ;
Dahmani, Ahmed ;
Lameiras, Sonia ;
Reyal, Fabien ;
Frenoy, Olivia ;
Pousse, Yannick ;
Reichen, Marcel ;
Woolfe, Adam ;
Brenan, Colin ;
Griffiths, Andrew D. ;
Vallot, Celine ;
Gerard, Annabelle .
NATURE GENETICS, 2019, 51 (06) :1060-+
[8]   Early re-staging and molecular subtype shift surveillance of locally recurrent or metastatic breast cancer: A new PET/CT integrated precise algorithm [J].
Guo, Wei ;
Hao, Bing ;
Luo, Nana ;
Ruan, Dan ;
Guo, Xiuyu ;
Chen, Hao-jun ;
Wu, Hua ;
Sun, Long .
CANCER LETTERS, 2018, 418 :221-229
[9]   Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy [J].
Haque, Waqar ;
Verma, Vivek ;
Hatch, Sandra ;
Klimberg, V. Suzanne ;
Butler, E. Brian ;
Teh, Bin S. .
BREAST CANCER RESEARCH AND TREATMENT, 2018, 170 (03) :559-567
[10]  
Holm J, 2017, CANCER RES, V77, P3708, DOI [10.1158/0008-5472.can-16-2574, 10.1158/0008-5472.CAN-16-2574]