CENTRAL VALUES OF DERIVATIVES OF DIRICHLET L-FUNCTIONS

被引:10
作者
Bui, H. M. [1 ]
Milinovich, Micah B. [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
基金
英国工程与自然科学研究理事会;
关键词
Dirichlet L-functions; non-vanishing of L-functions; mollifier method; RANDOM-MATRIX THEORY; ZEROS;
D O I
10.1142/S1793042111004125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C-q(+) be the set of even, primitive Dirichlet characters (mod q). Using the mollifier method, we show that L-(k) (1/2, chi) not equal 0 for almost all the characters chi is an element of C-q(+) when k and q are large. Here L(s, chi) is the Dirichlet L-function associated to the character chi.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 16 条
[1]   Mean values with cubic characters [J].
Baier, Stephan ;
Young, Matthew P. .
JOURNAL OF NUMBER THEORY, 2010, 130 (04) :879-903
[2]  
BALASUBRAMANIAN R, 1992, ANN SCI ECOLE NORM S, V25, P567
[3]  
Chowla S., 1965, Mathematics and its Applications
[4]   ZEROS OF DERIVATIVES OF RIEMANN ZETA-FUNCTION ON THE CRITICAL LINE [J].
CONREY, B .
JOURNAL OF NUMBER THEORY, 1983, 16 (01) :49-74
[5]   Applications of the L-functions ratios conjectures [J].
Conrey, J. B. ;
Snaith, N. C. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :594-646
[6]  
Conrey J. B., 6 POWER MOMENT DIRIC
[7]  
Conrey JB, 2000, INT MATH RES NOTICES, V2000, P883
[8]  
CONREY JB, 1990, PROG MATH, V85, P95
[9]  
Iwaniec H, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P941
[10]  
Iwaniec H., 2004, ANAL NUMBER THEORY, V53