Sign-changing blow-up solutions for Henon type elliptic equations with exponential nonlinearity

被引:5
作者
D'Aprile, Teresa [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
Henon type equation; Blow-up solutions; Finite-dimensional reduction; Min-max argument; CONCENTRATING SOLUTIONS; LIOUVILLE EQUATION; SINGULAR LIMITS; NODAL SOLUTIONS; SINH-POISSON; EXISTENCE; PROFILE;
D O I
10.1016/j.jfa.2015.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of sign-changing solutions with multiple concentration to the following boundary value problem -Delta u = epsilon(2)vertical bar x vertical bar(2 alpha) (e(u)-e(-u)) in Omega, u=0 on partial derivative Omega where alpha> 0, Omega is a smooth bounded domain in R-2 containing the origin, epsilon > 0 is a small parameter. In particular we prove that if a alpha not equal 1 then a nodal solution exists with a number of mixed positive and negative blow-up points up to 4. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2067 / 2101
页数:35
相关论文
共 30 条