A review of omics approaches to study preeclampsia

被引:45
作者
Benny, Paula A. [1 ]
Alakwaa, Fadhl M. [3 ]
Schlueter, Ryan J. [2 ]
Lassiter, Cameron B. [1 ]
Garmire, Lana X. [3 ]
机构
[1] Univ Hawaii, Epidemiol, Canc Ctr, 701 Ilalo St, Honolulu, HI 96813 USA
[2] Univ Hawaii, Dept Obstet & Gynaecol, 1319 Punahou St, Honolulu, HI 96826 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, North Campus Res Complex,1600 Huron Pkwy, Ann Arbor, MI 48105 USA
关键词
Preeclampsia; Big data; Omics; Epigenetics; Proteomics; Transcriptomics; Metabolomics; Multi-omics; Integration; Network; Pathway; Biomarker; SINGLE NUCLEOTIDE POLYMORPHISMS; PLACENTAL GENE-EXPRESSION; PROTEOMIC ANALYSIS; 1ST-TRIMESTER PREDICTION; PROMOTER HYPOMETHYLATION; METHYLATION STATUS; PREGNANCY; PROFILES; METABOLOMICS; ASSOCIATION;
D O I
10.1016/j.placenta.2020.01.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 101 条
  • [1] Lilikoi: an R package for personalized pathway-based classification modeling using metabolomics data
    Al-Akwaa, Fadhl M.
    Yunits, Breck
    Huang, Sijia
    Alhajaji, Hassam
    Garmire, Lana X.
    [J]. GIGASCIENCE, 2018, 7 (12):
  • [2] Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data
    Alakwaa, Fadhl M.
    Chaudhary, Kumardeep
    Garmire, Lana X.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2018, 17 (01) : 337 - 347
  • [3] Differential Methylation of Genes Associated with Cell Adhesion in Preeclamptic Placentas
    Anton, Lauren
    Brown, Amy G.
    Bartolomei, Marisa S.
    Elovitz, Michal A.
    [J]. PLOS ONE, 2014, 9 (06):
  • [4] Analysis of the Epigenome in Multiplex Pre-eclampsia Families Identifies SORD, DGKI, and ICA1 as Novel Candidate Risk Genes
    Ariff, Amir
    Melton, Phillip E.
    Brennecke, Shaun P.
    Moses, Eric K.
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [5] Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics
    Austdal, Marie
    Thomsen, Liv Cecilie Vestrheim
    Tangeras, Line Haugstad
    Skei, Bente
    Mathew, Seema
    Bjorge, Line
    Austgulen, Rigmor
    Bathen, Tone Frost
    Iversen, Ann-Charlotte
    [J]. PLACENTA, 2015, 36 (12) : 1455 - 1462
  • [6] First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study
    Austdal, Marie
    Tangeras, Line H.
    Skrastad, Ragnhild B.
    Salvesen, Kjell A.
    Austgulen, Rigmor
    Iversen, Ann-Charlotte
    Bathen, Tone F.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (09) : 21520 - 21538
  • [7] Integrated Proteomic and Metabolomic prediction of Term Preeclampsia
    Bahado-Singh, Ray
    Poon, Liona C.
    Yilmaz, Ali
    Syngelaki, Argyro
    Turkoglu, Onur
    Kumar, Praveen
    Kirma, Joseph
    Allos, Matthew
    Accurti, Veronica
    Li, Jiansheng
    Zhao, Peng
    Graham, Stewart F.
    Cool, David R.
    Nicolaides, Kypros
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Metabolomic determination of pathogenesis of late-onset preeclampsia
    Bahado-Singh, Ray O.
    Syngelaki, Argyro
    Mandal, Rupsari
    Graham, Stewart F.
    Akolekar, Ranjit
    Han, Beomsoo
    Bjondahl, Trent C.
    Dong, Edison
    Bauer, Samuel
    Alpay-Savasan, Zeynep
    Turkoglu, Onur
    Ogunyemi, Dotun
    Poon, Liona C.
    Wishart, David S.
    Nicolaides, Kypros H.
    [J]. JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2017, 30 (06) : 658 - 664
  • [9] Validation of metabolomic models for prediction of early-onset preeclampsia
    Bahado-Singh, Ray O.
    Syngelaki, Argyro
    Akolekar, Ranjit
    Mandal, Rupsari
    Bjondahl, Trent C.
    Han, Beomsoo
    Dong, Edison
    Bauer, Samuel
    Alpay-Savasan, Zeynep
    Graham, Stewart
    Turkoglu, Onur
    Wishart, David S.
    Nicolaides, Kypros H.
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2015, 213 (04) : 530.e1 - 530.e10
  • [10] Metabolomics and first-trimester prediction of early-onset preeclampsia
    Bahado-Singh, Ray O.
    Akolekar, Ranjit
    Mandal, Rupasri
    Dong, Edison
    Xia, Jianguo
    Kruger, Michael
    Wishart, David S.
    Nicolaides, Kypros
    [J]. JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2012, 25 (10) : 1840 - 1847