The effect of pre-smoothing functional data on cluster analysis

被引:21
作者
Hitchcock, David B. [1 ]
Booth, James G. [2 ]
Casella, George [3 ]
机构
[1] Univ S Carolina, Columbia, SC 29208 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
[3] Univ Florida, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
cluster analysis; classification; distance; dissimilarity measures; Stein estimation; shrinkage estimation;
D O I
10.1080/10629360600880684
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the possible benefits of pre-smoothing functional data before performing a cluster analysis. A simulation study compares the accuracy of clustering results on the basis of the use of unsmoothed functional data-and two smoothed versions of the data-as the inputs in a clustering algorithm. Smoothing is usually found to produce a more accurate clustering, with the best results arising from a novel James-Stein-type shrinkage adjustment to the standard linear smoother. Two real functional data sets are clustered using the competing methods to illustrate the procedure.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 18 条
[1]   Unsupervised curve clustering using B-splines [J].
Abraham, C ;
Cornillon, PA ;
Matzner-Lober, E ;
Molinari, N .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) :581-595
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]  
Everitt BS., 2001, CLUSTER ANAL
[4]   Improved estimation of dissimilarities by presmoothing functional data [J].
Hitchcock, DB ;
Casella, G ;
Booth, JG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :211-222
[5]   Clustering for sparsely sampled functional data [J].
James, GM ;
Sugar, CA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :397-408
[6]  
Kaufman L., 1987, Statistical Data Analysis Based on the L1-Norm and Related Methods. First International Conference, P405
[7]  
KAUFRMAN L, 1990, FINDING GROUPS DATA
[8]  
LARSON RE, 1990, CALCULUS ANAL GEOMET
[9]  
LEHMANNNEL, 1998, THEORY POINT ESTIMAT
[10]  
MacQueen J., 1967, Proc fifth Berkeley Symp Math Stat Probab, V1, P281