Membrane/Mediator-Free Rechargeable Enzymatic Biofuel Cell Utilizing Graphene/Single-Wall Carbon Nanotube Cogel Electrodes

被引:69
作者
Campbell, Alan S. [1 ]
Jeong, Yeon Joo [2 ]
Geier, Steven M. [2 ]
Koepsel, Richard R. [3 ]
Russell, Alan J. [1 ,3 ,4 ,5 ]
Islam, Mohammad F. [2 ]
机构
[1] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Disrupt Hlth Technol Inst, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
biofuel cell; aerogel; glucose; enzymes; graphene; single-walled carbon nanotubes; GLUCOSE-OXIDASE; DIRECT ELECTROCHEMISTRY; FUEL-CELLS; BILIRUBIN OXIDASE; ALCOHOL OXIDASE; LACCASE; SUBSTRATE; POWER; BIOSENSOR; AEROGELS;
D O I
10.1021/am507801x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Enzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the inclusion of potentially toxic and unstable electron transfer mediators or multicompartment systems separated by a semipermeable membrane resulting in complicated setups. We report on the development of a simple, membrane/mediator-free EBFC utilizing novel electrodes of graphene and single-wall carbon nanotube cogel. These cogel electrodes had large surface area (similar to 800 m(2) g(-1)) that enabled high enzyme loading, large porosity for unhindered glucose transport and moderate electrical conductivity (similar to 0.2 S cm(-1)) for efficient charge collection. Glucose oxidase and bilirubin oxidase were physically adsorbed onto these electrodes to form anodes and cathodes, respectively, and the EBFC produced power densities up to 0.19 mW cm(-2) that correlated to 0.65 mW mL(-1) or 140 mW g(-1) of GOX with an open circuit voltage of 0.61 V. Further, the electrodes were rejuvenated by a simple wash and reloading procedure. We postulate these porous and ultrahigh surface area electrodes will be useful for biosensing applications, and will allow reuse of EBFCs.
引用
收藏
页码:4056 / 4065
页数:10
相关论文
共 75 条
[1]   Electrochemical and electrophoretic deposition of enzymes: Principles, differences and application in miniaturized biosensor and biofuel cell electrodes [J].
Ammam, Malika .
BIOSENSORS & BIOELECTRONICS, 2014, 58 :121-131
[2]   Combination of laccase and catalase in construction of H2O2-O2 based biocathode for applications in glucose biofuel cells [J].
Ammam, Malika ;
Fransaer, Jan .
BIOSENSORS & BIOELECTRONICS, 2013, 39 (01) :274-281
[3]   Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes [J].
Arrocha, Andres A. ;
Cano-Castillo, Ulises ;
Aguila, Sergio A. ;
Vazquez-Duhalt, Rafael .
BIOSENSORS & BIOELECTRONICS, 2014, 61 :569-574
[4]   Mechanistic study of direct electron transfer in bilirubin oxidase [J].
Brocato, Shayna ;
Lau, Carolin ;
Atanassov, Plamen .
ELECTROCHIMICA ACTA, 2012, 61 :44-49
[5]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[6]   Carbon nanotube aerogels [J].
Bryning, Mateusz B. ;
Milkie, Daniel E. ;
Islam, Mohammad F. ;
Hough, Lawrence A. ;
Kikkawa, James M. ;
Yodh, Arjun G. .
ADVANCED MATERIALS, 2007, 19 (05) :661-+
[7]   Performance of non-compartmentalized enzymatic biofuel cell based on buckypaper cathode and ferrocene-containing redox polymer anode [J].
Bunte, Christine ;
Hussein, Laith ;
Urban, Gerald A. .
JOURNAL OF POWER SOURCES, 2014, 247 :579-586
[8]   Enzyme Catalytic Efficiency: A Function of Bio-Nano Interface Reactions [J].
Campbell, Alan S. ;
Dong, Chenbo ;
Meng, Fanke ;
Hardinger, Jeremy ;
Perhinschi, Gabriela ;
Wu, Nianqiang ;
Dinu, Cerasela Zoica .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) :5393-5403
[9]   Rheology of Carbon Nanotube Networks During Gelation [J].
Chen, D. T. N. ;
Chen, K. ;
Hough, L. A. ;
Islam, M. F. ;
Yodh, A. G. .
MACROMOLECULES, 2010, 43 (04) :2048-2053
[10]   Redox potentials of the blue copper sites of bilirubin oxidases [J].
Christenson, Andreas ;
Shleev, Sergey ;
Mano, Nicolas ;
Heller, Adam ;
Gorton, Lo .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (12) :1634-1641