What Is the Optimal Annealing Schedule in Quantum Annealing

被引:0
|
作者
Galindo, Oscar [1 ]
Kreinovich, Vladik [1 ]
机构
[1] Univ Texas El Paso, Dept Comp Sci, 500 W Univ, El Paso, TX 79968 USA
来源
2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2020年
基金
美国国家科学基金会;
关键词
Quantum Simulated Annealing; annealing schedules; shift-invariance; scale-invariance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many real-life situations in engineering (and in other disciplines), we need to solve an optimization problem: we want an optimal design, we want an optimal control, etc. One of the main problems in optimization is avoiding local maxima (or minima). One of the techniques that helps with solving this problem is annealing: whenever we find ourselves in a possibly local maximum, we jump out with sonic probability and continue search for the true optimum. A natural way to organize such a probabilistic perturbation of the deterministic optimization is to use quantum effects. It turns out that often, quantum annealing works much better than non-quantum one. Quantum annealing is the main technique behind the only commercially available computational devices that use quantum effects - D-Wave computers. The efficiency of quantum annealing depends on the proper selection of the annealing schedule, i.e., schedule that describes how the perturbations decrease with time. Empirically, it has been found that two schedules work best: power law and exponential ones. In this paper, we provide a theoretical explanation for these empirical successes, by proving that these two schedules are indeed optimal (in some reasonable sense).
引用
收藏
页码:963 / 967
页数:5
相关论文
共 50 条
  • [31] Dissipative Quantum Annealing
    de Falco, D.
    Pertoso, E.
    Tamascelli, D.
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 : 288 - 301
  • [32] Quantum ferromagnetic annealing
    Suzuki, Set
    Nishimori, Hidetoshi
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02): : 367 - 370
  • [33] AN INTRODUCTION TO QUANTUM ANNEALING
    de Falco, Diego
    Tamascelli, Dario
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2011, 45 (01): : 99 - 116
  • [34] Parallel quantum annealing
    Pelofske, Elijah
    Hahn, Georg
    Djidjev, Hristo N.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Parallel quantum annealing
    Elijah Pelofske
    Georg Hahn
    Hristo N. Djidjev
    Scientific Reports, 12
  • [36] SAMURAI - A GENERAL AND EFFICIENT SIMULATED-ANNEALING SCHEDULE WITH FULLY ADAPTIVE ANNEALING PARAMETERS
    CATTHOOR, F
    DEMAN, H
    VANDEWALLE, J
    INTEGRATION-THE VLSI JOURNAL, 1988, 6 (02) : 147 - 178
  • [37] MICROELECTRONIC CONTROL OF THE ANNEALING SCHEDULE AT BELL FURNACES
    ESSER, F
    BIRNSTOCK, F
    KLOPPER, D
    KRIEBEL, WR
    THUMERNICHT, R
    BLUMENTRITT, B
    SCHRODER, M
    NEUE HUTTE, 1987, 32 (01): : 24 - 28
  • [38] An efficient simple cooling schedule for simulated annealing
    Atiqullah, MM
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 396 - 404
  • [39] An analytically derived cooling schedule for simulated annealing
    Shen, Yanfang
    Kiatsupaibul, Seksan
    Zabinsky, Zelda B.
    Smith, Robert L.
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 38 (03) : 333 - 365
  • [40] An analytically derived cooling schedule for simulated annealing
    Yanfang Shen
    Seksan Kiatsupaibul
    Zelda B. Zabinsky
    Robert L. Smith
    Journal of Global Optimization, 2007, 38 : 333 - 365