Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo

被引:138
作者
Sedding, DG
Hermsen, J
Seay, U
Eickelberg, O
Kummer, W
Schwencke, C
Strasser, RH
Tillmanns, H
Braun-Dullaues, RC
机构
[1] Dresden Univ Technol, Dept Internal Med Cardiol 2, D-01307 Dresden, Germany
[2] Univ Giessen, Dept Internal Med Cardiol 1, Lung Ctr, Giessen, Germany
[3] Univ Giessen, Inst Anat & Cell Biol, Giessen, Germany
关键词
remodeling; muscle; smooth; signal transduction; stress; vasculature;
D O I
10.1161/01.RES.0000160610.61306.0f
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mechanotransduction represents an integral part of vascular homeostasis and contributes to vascular lesion formation. Previously, we demonstrated a mechanosensitive activation of phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt) resulting in p27(Kip1) transcriptional downregulation and cell cycle entry of vascular smooth muscle cells (VSMC). In this study, we further elucidated the signaling from outside-in toward PI3-K/Akt in vitro and in an in vivo model of elevated tensile force. When VSMC were subjected to cyclic stretch (0.5 Hz at 125% resting length), PI3-K, Akt, and Src kinases were found activated. Disrupting caveolar structures with beta-cyclodextrin or transfection of VSMC with caveolin-1 antisense oligonucleotides (ODN) prevented PI3-K and Akt activation and cell cycle entry. Furthermore, PI3-K and Akt were resistant to activation when Src kinases were inhibited pharmacologically or by overexpression of a kinase-dead c-Src mutant. alpha(V)beta(3) integrins were identified to colocalize with PI3-K/caveolin-1 complexes, and blockade of alpha(V)beta(3) integrins prevented Akt activation. The central role of caveolin-1 in mechanotransduction was further examined in an in vivo model of elevated tensile force. Interposition of wild-type (WT) jugular veins into WT carotid arteries resulted in a rapid Akt activation within the veins that was almost abolished when veins of caveolin-1 knockout ( KO) mice were used. Furthermore, late neointima formation within the KO veins was significantly reduced. Our study provides evidence that PI3-K/Akt is critically involved in mechanotransduction of VSMC in vitro and within the vasculature in vivo. Furthermore, caveolin-1 is essential for the integrin-mediated activation of PI3-K/Akt.
引用
收藏
页码:635 / 642
页数:8
相关论文
共 36 条
[1]  
Aplin AE, 1998, PHARMACOL REV, V50, P197
[2]   A novel role for the cyclin-dependent kinase inhibitor p27Kip1 in angiotensin II-stimulated vascular smooth muscle cell hypertrophy [J].
Braun-Dullaeus, RC ;
Mann, MJ ;
Ziegler, A ;
von der Leyen, HE ;
Dzau, VJ .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (06) :815-823
[3]   Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin [J].
Braun-Dullaeus, RC ;
Mann, MJ ;
Seay, U ;
Zhang, LN ;
von der Leyen, HE ;
Morris, RE ;
Dzau, VJ .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2001, 21 (07) :1152-1158
[4]   Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells [J].
Chapman, GB ;
Durante, W ;
Hellums, JD ;
Schafer, AI .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 278 (03) :H748-H754
[5]  
Chapman HA, 1999, THROMB HAEMOSTASIS, V82, P291
[6]   Regulation of Akt/PKB activation by tyrosine phosphorylation [J].
Chen, RY ;
Kim, O ;
Yang, JB ;
Sato, K ;
Eisenmann, KM ;
McCarthy, J ;
Chen, HG ;
Qiu, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :31858-31862
[7]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452
[8]   Vascular proliferation and atherosclerosis: New perspectives and therapeutic strategies [J].
Dzau, VJ ;
Braun-Dullaeus, RC ;
Sedding, DG .
NATURE MEDICINE, 2002, 8 (11) :1249-1256
[9]   Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo - A role for the caveolin-scaffolding domain [J].
Engelman, JA ;
Chu, C ;
Lin, A ;
Jo, H ;
Ikezu, T ;
Okamoto, T ;
Kohtz, DS ;
Lisanti, MP .
FEBS LETTERS, 1998, 428 (03) :205-211
[10]   Genetic ablation of caveolin-1 confers protection against atherosclerosis [J].
Frank, PG ;
Lee, H ;
Park, DS ;
Tandon, NN ;
Scherer, PE ;
Lisanti, MP .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (01) :98-105