Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding

被引:136
作者
Sang, Guolong [1 ,2 ]
Xu, Pei [1 ,2 ]
Yan, Tong [1 ,2 ]
Murugadoss, Vignesh [3 ,4 ]
Naik, Nithesh [5 ]
Ding, Yunsheng [1 ,2 ]
Guo, Zhanhu [4 ]
机构
[1] Hefei Univ Technol, Sch Chem & Chem Engn, Dept Polymer Sci & Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Anhui Key Lab Adv Funct Mat & Devices, Hefei 230009, Peoples R China
[3] Engn Multifunct Composites EMC Nanotech LLC, Adv Mat Div, Knoxville, TN 37934 USA
[4] Univ Tennessee, Dept Chem & Biomol Engn, Integrated Composites Lab, Knoxville, TN 37996 USA
[5] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Mech & Mfg Engn, Manipal 576104, Karnataka, India
基金
中国国家自然科学基金;
关键词
Polyurethane; Nanocomposites; Microcellular; Electromagnetic interference shielding; COMPOSITE FOAMS; FACILE PREPARATION; LIGHTWEIGHT; PERFORMANCE; MEMBRANE; MWCNTS;
D O I
10.1007/s40820-021-00677-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/nickel-coated CNTs (Ni@CNTs)/in on Phase separation polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic Frequeri, Z) interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm(-3)), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.
引用
收藏
页数:16
相关论文
共 78 条
[1]   Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT [J].
Abraham, Jiji ;
Arif, Mohammed ;
Xavier, Priti ;
Bose, Suryasarathi ;
George, Soney C. ;
Kalarikkal, Nandakumar ;
Thomas, Sabu .
POLYMER, 2017, 112 :102-115
[2]   Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams [J].
Ameli, A. ;
Jung, P. U. ;
Park, C. B. .
CARBON, 2013, 60 :379-391
[3]   Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding [J].
Asmatulu, R. ;
Bollavaram, P. K. ;
Patlolla, V. R. ;
Alarifi, I. M. ;
Khan, W. S. .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2020, 3 (01) :66-83
[4]   Control of the Porous Structure of Polystyrene Particles Obtained by Nonsolvent Induced Phase Separation [J].
Bianco, Antonino ;
Burg, Stephanie L. ;
Parnell, Andrew J. ;
Fernyhough, Christine M. ;
Washington, Adam L. ;
Hill, Christopher J. ;
Smith, Patrick J. ;
Whittaker, David M. ;
Mykhaylyk, Oleksandr O. ;
Fairdough, J. Patrick A. .
LANGMUIR, 2017, 33 (46) :13303-13314
[5]   Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding [J].
Biswas, Sourav ;
Kar, Goutam Prasanna ;
Bose, Suryasarathi .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) :25448-25463
[6]   Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding [J].
Chaudhary, Anisha ;
Kumari, Saroj ;
Kumar, Rajeev ;
Teotia, Satish ;
Singh, Bhanu Pratap ;
Singh, Avanish Pratap ;
Dhawan, S. K. ;
Dhakate, Sanjay R. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) :10600-10608
[7]  
Chen J., 2020, ENG SCI, V12, P13, DOI DOI 10.30919/ES8D1129
[8]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[9]   A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding [J].
Cui, Cheng-Hua ;
Yan, Ding-Xiang ;
Pang, Huan ;
Jia, Li-Chuan ;
Xu, Xin ;
Yang, Su ;
Xu, Jia-Zhuang ;
Li, Zhong-Ming .
CHEMICAL ENGINEERING JOURNAL, 2017, 323 :29-36
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240