Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A

被引:36
作者
Nakajima, Hiraku [1 ]
Takayama, Yuuya [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 04期
关键词
KAC-MOODY ALGEBRAS; TAUB-NUT SPACE; MODULI SPACES; ALE SPACES; CONJUGACY CLASSES; MIRROR SYMMETRY; INSTANTONS; REPRESENTATIONS; MONOPOLES; CLASSIFICATION;
D O I
10.1007/s00029-017-0341-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that Coulomb branches of quiver gauge theories of affine type A are Cherkis bow varieties, which have been introduced as ADHM type description of moduli space of instantons on the Taub-NUT space equivariant under a cyclic group action.
引用
收藏
页码:2553 / 2633
页数:81
相关论文
共 45 条
[1]  
Bellamy G., 2016, ARXIV E PRINTS
[2]   Hyperkahler structures and group actions [J].
Bielawski, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 :400-414
[3]   Hyperbolic localization of intersection cohomology [J].
Braden, T .
TRANSFORMATION GROUPS, 2003, 8 (03) :209-216
[4]  
Braverman A., 2014, ARXIV E PRINTS
[5]  
Braverman A., 2016, ARXIV E PRINTS
[6]  
Braverman A, 2016, ASTERISQUE, P1
[7]  
Braverman A, 2013, MOSC MATH J, V13, P233
[8]   PURSUING THE DOUBLE AFFINE GRASSMANNIAN, I: TRANSVERSAL SLICES VIA INSTANTONS ON Ak-SINGULARITIES [J].
Braverman, Alexander ;
Finkelberg, Michael .
DUKE MATHEMATICAL JOURNAL, 2010, 152 (02) :175-206
[9]  
Bullimore M., 2015, ARXIV E PRINTS
[10]   Singular monopoles and supersymmetric gauge theories in three dimensions [J].
Cherkis, SA ;
Kapustin, A .
NUCLEAR PHYSICS B, 1998, 525 (1-2) :215-234