Nilsequences, null-sequences, and multiple correlation sequences

被引:26
|
作者
Leibman, A. [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
ERGODIC AVERAGES; POINTWISE CONVERGENCE; TRANSLATIONS; POLYNOMIALS; VALUES;
D O I
10.1017/etds.2013.36
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (d-parameter) basic nilsequence is a sequence of the form psi(n) = f(a(n)x), n is an element of Z(d), where x is a point of a compact nilmanifold X, a is a translation on X, and f is an element of C(X); a nilsequence is a uniform limit of basic nilsequences. If X = G/Gamma is a compact nilmanifold, Y is a subnilmanifold of X, (g(n))(n)is an element of Z(d) is a polynomial sequence in G, and f is an element of C(X), we show that the sequence phi(n) = integral Y-g(n) f is the sum of a basic nilsequence and a sequence that converges to zero in uniform density (a null-sequence). We also show that an integral of a family of nilsequences is a nilsequence plus a null-sequence. We deduce that for any invertible finite measure preserving system (W, B, mu, T), polynomials p(1),..., p(k) : Z(d) -> Z, and sets A(1),..., A(k) is an element of B, the sequence phi(n) = mu(T(p1(n))A1 boolean AND ... boolean AND T(pk(n))A(k), n is an element of Z(d), is the sum of a nilsequence and a null-sequence.
引用
收藏
页码:176 / 191
页数:16
相关论文
共 50 条
  • [41] The Almost Orthogonal Polynomial Sequences
    Stankovic, M. S.
    Dankovic, B.
    Marinkovic, S.
    Rajkovic, P. M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 650 - +
  • [42] On arithmetic functions orthogonal to deterministic sequences
    Kanigowski, Adam
    Kulaga-Przymus, Joanna
    Lemanczyk, Mariusz
    de la Rue, Thierry
    ADVANCES IN MATHEMATICS, 2023, 428
  • [43] Some Appell-Dunkl Sequences
    Ceniceros, Judit Minguez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [44] Squares in Piatetski-Shapiro sequences
    Liu, Kui
    Shparlinski, Igor E.
    Zhang, Tianping
    ACTA ARITHMETICA, 2017, 181 (03) : 239 - 252
  • [45] Values of the euler function in various sequences
    Banks, WD
    Ford, K
    Luca, F
    Pappalardi, F
    Shparlinski, IE
    MONATSHEFTE FUR MATHEMATIK, 2005, 146 (01): : 1 - 19
  • [46] On the ideal convergence of sequences of Switkowski functions
    Natkaniec, Tomasz
    Szuca, Piotr
    EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (01) : 155 - 167
  • [47] INTERPOLATING SEQUENCES FOR ANALYTIC SELFMAPPINGS OF THE DISC
    Menal Ferrer, Pere
    Monreal Galan, Nacho
    Nicolau, Artur
    AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (02) : 437 - 465
  • [48] SOLVING POLYNOMIALS WITH FIBONACCI TYPE SEQUENCES
    Perez Garcia, Victor
    Piasecki, Lukasz
    Sanchez Nungaray, Armando
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (02) : 251 - 259
  • [49] Automatic sequences and parity of partition functions
    Chen, Shi-Chao
    ADVANCES IN APPLIED MATHEMATICS, 2025, 166
  • [50] Cyclotomic exponent sequences of numerical semigroups
    Ciolan, Alexandru
    Garcia-Sanchez, Pedro A.
    Herrera-Poyatos, Andres
    Moree, Pieter
    DISCRETE MATHEMATICS, 2022, 345 (06)