Nilsequences, null-sequences, and multiple correlation sequences

被引:26
|
作者
Leibman, A. [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
ERGODIC AVERAGES; POINTWISE CONVERGENCE; TRANSLATIONS; POLYNOMIALS; VALUES;
D O I
10.1017/etds.2013.36
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (d-parameter) basic nilsequence is a sequence of the form psi(n) = f(a(n)x), n is an element of Z(d), where x is a point of a compact nilmanifold X, a is a translation on X, and f is an element of C(X); a nilsequence is a uniform limit of basic nilsequences. If X = G/Gamma is a compact nilmanifold, Y is a subnilmanifold of X, (g(n))(n)is an element of Z(d) is a polynomial sequence in G, and f is an element of C(X), we show that the sequence phi(n) = integral Y-g(n) f is the sum of a basic nilsequence and a sequence that converges to zero in uniform density (a null-sequence). We also show that an integral of a family of nilsequences is a nilsequence plus a null-sequence. We deduce that for any invertible finite measure preserving system (W, B, mu, T), polynomials p(1),..., p(k) : Z(d) -> Z, and sets A(1),..., A(k) is an element of B, the sequence phi(n) = mu(T(p1(n))A1 boolean AND ... boolean AND T(pk(n))A(k), n is an element of Z(d), is the sum of a nilsequence and a null-sequence.
引用
收藏
页码:176 / 191
页数:16
相关论文
共 50 条
  • [31] Automatic Sequences and Generalised Polynomials
    Byszewski, Jakub
    Konieczny, Jakub
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (02): : 392 - 426
  • [32] Refined Restricted Inversion Sequences
    Lin, Zhicong
    Kim, Dongsu
    ANNALS OF COMBINATORICS, 2021, 25 (04) : 849 - 875
  • [33] On generalized Vietoris' number sequences
    Cacao, Isabel
    Irene Falcao, M.
    Malonek, Helmuth R.
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 77 - 85
  • [34] Prime factors of dynamical sequences
    Faber, Xander
    Granville, Andrew
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 661 : 189 - 214
  • [35] PERIOD OF SEQUENCES OF PRIMITIVE POLYNOMIALS
    PARK, B
    CHOI, H
    CHANG, T
    KANG, K
    ELECTRONICS LETTERS, 1993, 29 (04) : 390 - 392
  • [36] On Limits of Sequences of Rational Functions
    Arthur A. Danielyan
    Computational Methods and Function Theory, 2001, 1 (2) : 339 - 344
  • [37] Smooth numbers in Beatty sequences
    Baker, Roger
    ACTA ARITHMETICA, 2021, 200 (04) : 429 - 438
  • [38] Modifications of Modified Jacobi Sequences
    Xiong, Tingyao
    Hall, Jonathan I.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) : 493 - 504
  • [39] A FAMILY OF SEQUENCES OF BINOMIAL TYPE
    Mlotkowski, Wojciech
    Romanowicz, Anna
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2013, 33 (02): : 401 - 408
  • [40] Recurrence relation for the Appell sequences
    Guettai, Ghania
    Laissaoui, Diffalah
    Rahmani, Mourad
    Sebaoui, Madjid
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (05) : 414 - 429