Nilsequences, null-sequences, and multiple correlation sequences

被引:26
|
作者
Leibman, A. [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
ERGODIC AVERAGES; POINTWISE CONVERGENCE; TRANSLATIONS; POLYNOMIALS; VALUES;
D O I
10.1017/etds.2013.36
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (d-parameter) basic nilsequence is a sequence of the form psi(n) = f(a(n)x), n is an element of Z(d), where x is a point of a compact nilmanifold X, a is a translation on X, and f is an element of C(X); a nilsequence is a uniform limit of basic nilsequences. If X = G/Gamma is a compact nilmanifold, Y is a subnilmanifold of X, (g(n))(n)is an element of Z(d) is a polynomial sequence in G, and f is an element of C(X), we show that the sequence phi(n) = integral Y-g(n) f is the sum of a basic nilsequence and a sequence that converges to zero in uniform density (a null-sequence). We also show that an integral of a family of nilsequences is a nilsequence plus a null-sequence. We deduce that for any invertible finite measure preserving system (W, B, mu, T), polynomials p(1),..., p(k) : Z(d) -> Z, and sets A(1),..., A(k) is an element of B, the sequence phi(n) = mu(T(p1(n))A1 boolean AND ... boolean AND T(pk(n))A(k), n is an element of Z(d), is the sum of a nilsequence and a null-sequence.
引用
收藏
页码:176 / 191
页数:16
相关论文
共 50 条
  • [21] Fuchsian holonomic sequences
    van der Hoeven, Joris
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 36 (3) : 557 - 591
  • [22] Majorization and multiplier sequences
    Church, Amber
    Pereira, Rajesh
    Kribs, David
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (09) : 2132 - 2139
  • [23] Congruences for Sheffer sequences
    Serafin, Grzegorz
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 116 - 136
  • [24] Construction of μ-normal sequences
    Madritsch, Manfred G.
    Mance, Bill
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 259 - 280
  • [25] Ergodic averaging sequences
    Michael Boshernitzan
    Grigori Kolesnik
    Anthony Quas
    Máté Wierdl
    Journal d’Analyse Mathématique, 2005, 95 : 63 - 103
  • [26] A MULTIDIMENSIONAL SZEMEREDI THEOREM FOR HARDY SEQUENCES OF DIFFERENT GROWTH
    Frantzikinakis, Nikos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (08) : 5653 - 5692
  • [27] An Efficient Algorithm for Designing Long Aperiodic Binary Sequences With Low Auto-Correlation Sidelobes
    Brest, Janez
    Popic, Jan
    Herzog, Jana
    Boskovic, Borko
    IEEE ACCESS, 2024, 12 : 108921 - 108927
  • [28] PRODUCTLY LINEARLY INDEPENDENT SEQUENCES
    Hancl, Jaroslav
    Korcekova, Katarina
    Novotny, Lukas
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2015, 52 (03) : 350 - 370
  • [30] EQUIDISTRIBUTION OF SPARSE SEQUENCES ON NILMANIFOLDS
    Frantzikinakis, Nikos
    JOURNAL D ANALYSE MATHEMATIQUE, 2009, 109 : 353 - 395